![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lema | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9704 for detailed description. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lema | ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4234 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑓 ∩ 𝑥) = (𝐴 ∩ 𝑥)) | |
2 | 1 | sseq1d 4040 | . 2 ⊢ (𝑓 = 𝐴 → ((𝑓 ∩ 𝑥) ⊆ 𝐵 ↔ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
3 | inf3lem.4 | . . 3 ⊢ 𝐵 ∈ V | |
4 | sseq2 4035 | . . . . 5 ⊢ (𝑣 = 𝐵 → ((𝑓 ∩ 𝑥) ⊆ 𝑣 ↔ (𝑓 ∩ 𝑥) ⊆ 𝐵)) | |
5 | 4 | rabbidv 3451 | . . . 4 ⊢ (𝑣 = 𝐵 → {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵}) |
6 | inf3lem.1 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
7 | sseq2 4035 | . . . . . . . 8 ⊢ (𝑦 = 𝑣 → ((𝑤 ∩ 𝑥) ⊆ 𝑦 ↔ (𝑤 ∩ 𝑥) ⊆ 𝑣)) | |
8 | 7 | rabbidv 3451 | . . . . . . 7 ⊢ (𝑦 = 𝑣 → {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦} = {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑣}) |
9 | ineq1 4234 | . . . . . . . . 9 ⊢ (𝑤 = 𝑓 → (𝑤 ∩ 𝑥) = (𝑓 ∩ 𝑥)) | |
10 | 9 | sseq1d 4040 | . . . . . . . 8 ⊢ (𝑤 = 𝑓 → ((𝑤 ∩ 𝑥) ⊆ 𝑣 ↔ (𝑓 ∩ 𝑥) ⊆ 𝑣)) |
11 | 10 | cbvrabv 3454 | . . . . . . 7 ⊢ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑣} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣} |
12 | 8, 11 | eqtrdi 2796 | . . . . . 6 ⊢ (𝑦 = 𝑣 → {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
13 | 12 | cbvmptv 5279 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑣 ∈ V ↦ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
14 | 6, 13 | eqtri 2768 | . . . 4 ⊢ 𝐺 = (𝑣 ∈ V ↦ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
15 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
16 | 15 | rabex 5357 | . . . 4 ⊢ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵} ∈ V |
17 | 5, 14, 16 | fvmpt 7029 | . . 3 ⊢ (𝐵 ∈ V → (𝐺‘𝐵) = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵}) |
18 | 3, 17 | ax-mp 5 | . 2 ⊢ (𝐺‘𝐵) = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵} |
19 | 2, 18 | elrab2 3711 | 1 ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ↦ cmpt 5249 ↾ cres 5702 ‘cfv 6573 ωcom 7903 reccrdg 8465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: inf3lemd 9696 inf3lem1 9697 inf3lem2 9698 inf3lem3 9699 |
Copyright terms: Public domain | W3C validator |