MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lema Structured version   Visualization version   GIF version

Theorem inf3lema 9382
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9393 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lema (𝐴 ∈ (𝐺𝐵) ↔ (𝐴𝑥 ∧ (𝐴𝑥) ⊆ 𝐵))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lema
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 4139 . . 3 (𝑓 = 𝐴 → (𝑓𝑥) = (𝐴𝑥))
21sseq1d 3952 . 2 (𝑓 = 𝐴 → ((𝑓𝑥) ⊆ 𝐵 ↔ (𝐴𝑥) ⊆ 𝐵))
3 inf3lem.4 . . 3 𝐵 ∈ V
4 sseq2 3947 . . . . 5 (𝑣 = 𝐵 → ((𝑓𝑥) ⊆ 𝑣 ↔ (𝑓𝑥) ⊆ 𝐵))
54rabbidv 3414 . . . 4 (𝑣 = 𝐵 → {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵})
6 inf3lem.1 . . . . 5 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
7 sseq2 3947 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑤𝑥) ⊆ 𝑦 ↔ (𝑤𝑥) ⊆ 𝑣))
87rabbidv 3414 . . . . . . 7 (𝑦 = 𝑣 → {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦} = {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑣})
9 ineq1 4139 . . . . . . . . 9 (𝑤 = 𝑓 → (𝑤𝑥) = (𝑓𝑥))
109sseq1d 3952 . . . . . . . 8 (𝑤 = 𝑓 → ((𝑤𝑥) ⊆ 𝑣 ↔ (𝑓𝑥) ⊆ 𝑣))
1110cbvrabv 3426 . . . . . . 7 {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑣} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣}
128, 11eqtrdi 2794 . . . . . 6 (𝑦 = 𝑣 → {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
1312cbvmptv 5187 . . . . 5 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑣 ∈ V ↦ {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
146, 13eqtri 2766 . . . 4 𝐺 = (𝑣 ∈ V ↦ {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
15 vex 3436 . . . . 5 𝑥 ∈ V
1615rabex 5256 . . . 4 {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵} ∈ V
175, 14, 16fvmpt 6875 . . 3 (𝐵 ∈ V → (𝐺𝐵) = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵})
183, 17ax-mp 5 . 2 (𝐺𝐵) = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵}
192, 18elrab2 3627 1 (𝐴 ∈ (𝐺𝐵) ↔ (𝐴𝑥 ∧ (𝐴𝑥) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cin 3886  wss 3887  c0 4256  cmpt 5157  cres 5591  cfv 6433  ωcom 7712  reccrdg 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  inf3lemd  9385  inf3lem1  9386  inf3lem2  9387  inf3lem3  9388
  Copyright terms: Public domain W3C validator