Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inf3lema | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9393 for detailed description. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lema | ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4139 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑓 ∩ 𝑥) = (𝐴 ∩ 𝑥)) | |
2 | 1 | sseq1d 3952 | . 2 ⊢ (𝑓 = 𝐴 → ((𝑓 ∩ 𝑥) ⊆ 𝐵 ↔ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
3 | inf3lem.4 | . . 3 ⊢ 𝐵 ∈ V | |
4 | sseq2 3947 | . . . . 5 ⊢ (𝑣 = 𝐵 → ((𝑓 ∩ 𝑥) ⊆ 𝑣 ↔ (𝑓 ∩ 𝑥) ⊆ 𝐵)) | |
5 | 4 | rabbidv 3414 | . . . 4 ⊢ (𝑣 = 𝐵 → {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵}) |
6 | inf3lem.1 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
7 | sseq2 3947 | . . . . . . . 8 ⊢ (𝑦 = 𝑣 → ((𝑤 ∩ 𝑥) ⊆ 𝑦 ↔ (𝑤 ∩ 𝑥) ⊆ 𝑣)) | |
8 | 7 | rabbidv 3414 | . . . . . . 7 ⊢ (𝑦 = 𝑣 → {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦} = {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑣}) |
9 | ineq1 4139 | . . . . . . . . 9 ⊢ (𝑤 = 𝑓 → (𝑤 ∩ 𝑥) = (𝑓 ∩ 𝑥)) | |
10 | 9 | sseq1d 3952 | . . . . . . . 8 ⊢ (𝑤 = 𝑓 → ((𝑤 ∩ 𝑥) ⊆ 𝑣 ↔ (𝑓 ∩ 𝑥) ⊆ 𝑣)) |
11 | 10 | cbvrabv 3426 | . . . . . . 7 ⊢ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑣} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣} |
12 | 8, 11 | eqtrdi 2794 | . . . . . 6 ⊢ (𝑦 = 𝑣 → {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
13 | 12 | cbvmptv 5187 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑣 ∈ V ↦ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
14 | 6, 13 | eqtri 2766 | . . . 4 ⊢ 𝐺 = (𝑣 ∈ V ↦ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
15 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
16 | 15 | rabex 5256 | . . . 4 ⊢ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵} ∈ V |
17 | 5, 14, 16 | fvmpt 6875 | . . 3 ⊢ (𝐵 ∈ V → (𝐺‘𝐵) = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵}) |
18 | 3, 17 | ax-mp 5 | . 2 ⊢ (𝐺‘𝐵) = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵} |
19 | 2, 18 | elrab2 3627 | 1 ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ↦ cmpt 5157 ↾ cres 5591 ‘cfv 6433 ωcom 7712 reccrdg 8240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: inf3lemd 9385 inf3lem1 9386 inf3lem2 9387 inf3lem3 9388 |
Copyright terms: Public domain | W3C validator |