MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lema Structured version   Visualization version   GIF version

Theorem inf3lema 9514
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9525 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lema (𝐴 ∈ (𝐺𝐵) ↔ (𝐴𝑥 ∧ (𝐴𝑥) ⊆ 𝐵))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lema
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 4163 . . 3 (𝑓 = 𝐴 → (𝑓𝑥) = (𝐴𝑥))
21sseq1d 3966 . 2 (𝑓 = 𝐴 → ((𝑓𝑥) ⊆ 𝐵 ↔ (𝐴𝑥) ⊆ 𝐵))
3 inf3lem.4 . . 3 𝐵 ∈ V
4 sseq2 3961 . . . . 5 (𝑣 = 𝐵 → ((𝑓𝑥) ⊆ 𝑣 ↔ (𝑓𝑥) ⊆ 𝐵))
54rabbidv 3402 . . . 4 (𝑣 = 𝐵 → {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵})
6 inf3lem.1 . . . . 5 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
7 sseq2 3961 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑤𝑥) ⊆ 𝑦 ↔ (𝑤𝑥) ⊆ 𝑣))
87rabbidv 3402 . . . . . . 7 (𝑦 = 𝑣 → {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦} = {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑣})
9 ineq1 4163 . . . . . . . . 9 (𝑤 = 𝑓 → (𝑤𝑥) = (𝑓𝑥))
109sseq1d 3966 . . . . . . . 8 (𝑤 = 𝑓 → ((𝑤𝑥) ⊆ 𝑣 ↔ (𝑓𝑥) ⊆ 𝑣))
1110cbvrabv 3405 . . . . . . 7 {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑣} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣}
128, 11eqtrdi 2782 . . . . . 6 (𝑦 = 𝑣 → {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
1312cbvmptv 5195 . . . . 5 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑣 ∈ V ↦ {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
146, 13eqtri 2754 . . . 4 𝐺 = (𝑣 ∈ V ↦ {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
15 vex 3440 . . . . 5 𝑥 ∈ V
1615rabex 5277 . . . 4 {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵} ∈ V
175, 14, 16fvmpt 6929 . . 3 (𝐵 ∈ V → (𝐺𝐵) = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵})
183, 17ax-mp 5 . 2 (𝐺𝐵) = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵}
192, 18elrab2 3650 1 (𝐴 ∈ (𝐺𝐵) ↔ (𝐴𝑥 ∧ (𝐴𝑥) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cin 3901  wss 3902  c0 4283  cmpt 5172  cres 5618  cfv 6481  ωcom 7796  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  inf3lemd  9517  inf3lem1  9518  inf3lem2  9519  inf3lem3  9520
  Copyright terms: Public domain W3C validator