![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lema | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9630 for detailed description. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lema | ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4206 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑓 ∩ 𝑥) = (𝐴 ∩ 𝑥)) | |
2 | 1 | sseq1d 4014 | . 2 ⊢ (𝑓 = 𝐴 → ((𝑓 ∩ 𝑥) ⊆ 𝐵 ↔ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
3 | inf3lem.4 | . . 3 ⊢ 𝐵 ∈ V | |
4 | sseq2 4009 | . . . . 5 ⊢ (𝑣 = 𝐵 → ((𝑓 ∩ 𝑥) ⊆ 𝑣 ↔ (𝑓 ∩ 𝑥) ⊆ 𝐵)) | |
5 | 4 | rabbidv 3441 | . . . 4 ⊢ (𝑣 = 𝐵 → {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵}) |
6 | inf3lem.1 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
7 | sseq2 4009 | . . . . . . . 8 ⊢ (𝑦 = 𝑣 → ((𝑤 ∩ 𝑥) ⊆ 𝑦 ↔ (𝑤 ∩ 𝑥) ⊆ 𝑣)) | |
8 | 7 | rabbidv 3441 | . . . . . . 7 ⊢ (𝑦 = 𝑣 → {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦} = {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑣}) |
9 | ineq1 4206 | . . . . . . . . 9 ⊢ (𝑤 = 𝑓 → (𝑤 ∩ 𝑥) = (𝑓 ∩ 𝑥)) | |
10 | 9 | sseq1d 4014 | . . . . . . . 8 ⊢ (𝑤 = 𝑓 → ((𝑤 ∩ 𝑥) ⊆ 𝑣 ↔ (𝑓 ∩ 𝑥) ⊆ 𝑣)) |
11 | 10 | cbvrabv 3443 | . . . . . . 7 ⊢ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑣} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣} |
12 | 8, 11 | eqtrdi 2789 | . . . . . 6 ⊢ (𝑦 = 𝑣 → {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
13 | 12 | cbvmptv 5262 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑣 ∈ V ↦ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
14 | 6, 13 | eqtri 2761 | . . . 4 ⊢ 𝐺 = (𝑣 ∈ V ↦ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
15 | vex 3479 | . . . . 5 ⊢ 𝑥 ∈ V | |
16 | 15 | rabex 5333 | . . . 4 ⊢ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵} ∈ V |
17 | 5, 14, 16 | fvmpt 6999 | . . 3 ⊢ (𝐵 ∈ V → (𝐺‘𝐵) = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵}) |
18 | 3, 17 | ax-mp 5 | . 2 ⊢ (𝐺‘𝐵) = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵} |
19 | 2, 18 | elrab2 3687 | 1 ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 ↦ cmpt 5232 ↾ cres 5679 ‘cfv 6544 ωcom 7855 reccrdg 8409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: inf3lemd 9622 inf3lem1 9623 inf3lem2 9624 inf3lem3 9625 |
Copyright terms: Public domain | W3C validator |