MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lema Structured version   Visualization version   GIF version

Theorem inf3lema 9577
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9588 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lema (𝐴 ∈ (𝐺𝐵) ↔ (𝐴𝑥 ∧ (𝐴𝑥) ⊆ 𝐵))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lema
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 4176 . . 3 (𝑓 = 𝐴 → (𝑓𝑥) = (𝐴𝑥))
21sseq1d 3978 . 2 (𝑓 = 𝐴 → ((𝑓𝑥) ⊆ 𝐵 ↔ (𝐴𝑥) ⊆ 𝐵))
3 inf3lem.4 . . 3 𝐵 ∈ V
4 sseq2 3973 . . . . 5 (𝑣 = 𝐵 → ((𝑓𝑥) ⊆ 𝑣 ↔ (𝑓𝑥) ⊆ 𝐵))
54rabbidv 3413 . . . 4 (𝑣 = 𝐵 → {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵})
6 inf3lem.1 . . . . 5 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
7 sseq2 3973 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑤𝑥) ⊆ 𝑦 ↔ (𝑤𝑥) ⊆ 𝑣))
87rabbidv 3413 . . . . . . 7 (𝑦 = 𝑣 → {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦} = {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑣})
9 ineq1 4176 . . . . . . . . 9 (𝑤 = 𝑓 → (𝑤𝑥) = (𝑓𝑥))
109sseq1d 3978 . . . . . . . 8 (𝑤 = 𝑓 → ((𝑤𝑥) ⊆ 𝑣 ↔ (𝑓𝑥) ⊆ 𝑣))
1110cbvrabv 3416 . . . . . . 7 {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑣} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣}
128, 11eqtrdi 2780 . . . . . 6 (𝑦 = 𝑣 → {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
1312cbvmptv 5211 . . . . 5 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑣 ∈ V ↦ {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
146, 13eqtri 2752 . . . 4 𝐺 = (𝑣 ∈ V ↦ {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
15 vex 3451 . . . . 5 𝑥 ∈ V
1615rabex 5294 . . . 4 {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵} ∈ V
175, 14, 16fvmpt 6968 . . 3 (𝐵 ∈ V → (𝐺𝐵) = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵})
183, 17ax-mp 5 . 2 (𝐺𝐵) = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵}
192, 18elrab2 3662 1 (𝐴 ∈ (𝐺𝐵) ↔ (𝐴𝑥 ∧ (𝐴𝑥) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cin 3913  wss 3914  c0 4296  cmpt 5188  cres 5640  cfv 6511  ωcom 7842  reccrdg 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by:  inf3lemd  9580  inf3lem1  9581  inf3lem2  9582  inf3lem3  9583
  Copyright terms: Public domain W3C validator