Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq123d | Structured version Visualization version GIF version |
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq123d.a | ⊢ (𝜑 → 𝐴 = 𝐷) |
infeq123d.b | ⊢ (𝜑 → 𝐵 = 𝐸) |
infeq123d.c | ⊢ (𝜑 → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
infeq123d | ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq123d.a | . . 3 ⊢ (𝜑 → 𝐴 = 𝐷) | |
2 | infeq123d.b | . . 3 ⊢ (𝜑 → 𝐵 = 𝐸) | |
3 | infeq123d.c | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐹) | |
4 | 3 | cnveqd 5716 | . . 3 ⊢ (𝜑 → ◡𝐶 = ◡𝐹) |
5 | 1, 2, 4 | supeq123d 8940 | . 2 ⊢ (𝜑 → sup(𝐴, 𝐵, ◡𝐶) = sup(𝐷, 𝐸, ◡𝐹)) |
6 | df-inf 8933 | . 2 ⊢ inf(𝐴, 𝐵, 𝐶) = sup(𝐴, 𝐵, ◡𝐶) | |
7 | df-inf 8933 | . 2 ⊢ inf(𝐷, 𝐸, 𝐹) = sup(𝐷, 𝐸, ◡𝐹) | |
8 | 5, 6, 7 | 3eqtr4g 2819 | 1 ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ◡ccnv 5524 supcsup 8930 infcinf 8931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-in 3866 df-ss 3876 df-uni 4800 df-br 5034 df-opab 5096 df-cnv 5533 df-sup 8932 df-inf 8933 |
This theorem is referenced by: wsuceq123 33355 wlimeq12 33360 |
Copyright terms: Public domain | W3C validator |