MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfinf Structured version   Visualization version   GIF version

Theorem nfinf 9367
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
nfinf.1 𝑥𝐴
nfinf.2 𝑥𝐵
nfinf.3 𝑥𝑅
Assertion
Ref Expression
nfinf 𝑥inf(𝐴, 𝐵, 𝑅)

Proof of Theorem nfinf
StepHypRef Expression
1 df-inf 9327 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
2 nfinf.1 . . 3 𝑥𝐴
3 nfinf.2 . . 3 𝑥𝐵
4 nfinf.3 . . . 4 𝑥𝑅
54nfcnv 5818 . . 3 𝑥𝑅
62, 3, 5nfsup 9335 . 2 𝑥sup(𝐴, 𝐵, 𝑅)
71, 6nfcxfr 2892 1 𝑥inf(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879  ccnv 5615  supcsup 9324  infcinf 9325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-sup 9326  df-inf 9327
This theorem is referenced by:  iundisj  25474  iundisjf  32564  iundisjfi  32773  nfwsuc  35851  nfwlim  35855  allbutfiinf  45457  infrpgernmpt  45502  liminflelimsuplem  45812  stoweidlem62  46099  fourierdlem31  46175  iunhoiioolem  46712  smfinf  46855  prmdvdsfmtnof1lem1  47614
  Copyright terms: Public domain W3C validator