| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfinf | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| nfinf.1 | ⊢ Ⅎ𝑥𝐴 |
| nfinf.2 | ⊢ Ⅎ𝑥𝐵 |
| nfinf.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9401 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
| 2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 4 | nfcnv 5845 | . . 3 ⊢ Ⅎ𝑥◡𝑅 |
| 6 | 2, 3, 5 | nfsup 9409 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) |
| 7 | 1, 6 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 ◡ccnv 5640 supcsup 9398 infcinf 9399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-sup 9400 df-inf 9401 |
| This theorem is referenced by: iundisj 25456 iundisjf 32525 iundisjfi 32726 nfwsuc 35813 nfwlim 35817 allbutfiinf 45423 infrpgernmpt 45468 liminflelimsuplem 45780 stoweidlem62 46067 fourierdlem31 46143 iunhoiioolem 46680 smfinf 46823 prmdvdsfmtnof1lem1 47589 |
| Copyright terms: Public domain | W3C validator |