MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfinf Structured version   Visualization version   GIF version

Theorem nfinf 9519
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
nfinf.1 𝑥𝐴
nfinf.2 𝑥𝐵
nfinf.3 𝑥𝑅
Assertion
Ref Expression
nfinf 𝑥inf(𝐴, 𝐵, 𝑅)

Proof of Theorem nfinf
StepHypRef Expression
1 df-inf 9480 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
2 nfinf.1 . . 3 𝑥𝐴
3 nfinf.2 . . 3 𝑥𝐵
4 nfinf.3 . . . 4 𝑥𝑅
54nfcnv 5891 . . 3 𝑥𝑅
62, 3, 5nfsup 9488 . 2 𝑥sup(𝐴, 𝐵, 𝑅)
71, 6nfcxfr 2900 1 𝑥inf(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2887  ccnv 5687  supcsup 9477  infcinf 9478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-xp 5694  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-sup 9479  df-inf 9480
This theorem is referenced by:  iundisj  25596  iundisjf  32608  iundisjfi  32803  nfwsuc  35799  nfwlim  35803  allbutfiinf  45369  infrpgernmpt  45414  liminflelimsuplem  45730  stoweidlem62  46017  fourierdlem31  46093  iunhoiioolem  46630  smfinf  46773  prmdvdsfmtnof1lem1  47508
  Copyright terms: Public domain W3C validator