Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfinf | Structured version Visualization version GIF version |
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
nfinf.1 | ⊢ Ⅎ𝑥𝐴 |
nfinf.2 | ⊢ Ⅎ𝑥𝐵 |
nfinf.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9312 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
5 | 4 | nfcnv 5830 | . . 3 ⊢ Ⅎ𝑥◡𝑅 |
6 | 2, 3, 5 | nfsup 9320 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) |
7 | 1, 6 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2885 ◡ccnv 5629 supcsup 9309 infcinf 9310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pr 5382 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-xp 5636 df-cnv 5638 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-sup 9311 df-inf 9312 |
This theorem is referenced by: iundisj 24825 iundisjf 31282 iundisjfi 31471 nfwsuc 34158 nfwlim 34162 allbutfiinf 43351 infrpgernmpt 43396 liminflelimsuplem 43708 stoweidlem62 43995 fourierdlem31 44071 iunhoiioolem 44606 smfinf 44749 prmdvdsfmtnof1lem1 45458 |
Copyright terms: Public domain | W3C validator |