![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfinf | Structured version Visualization version GIF version |
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
nfinf.1 | ⊢ Ⅎ𝑥𝐴 |
nfinf.2 | ⊢ Ⅎ𝑥𝐵 |
nfinf.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9480 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
5 | 4 | nfcnv 5891 | . . 3 ⊢ Ⅎ𝑥◡𝑅 |
6 | 2, 3, 5 | nfsup 9488 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) |
7 | 1, 6 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 ◡ccnv 5687 supcsup 9477 infcinf 9478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-sup 9479 df-inf 9480 |
This theorem is referenced by: iundisj 25596 iundisjf 32608 iundisjfi 32803 nfwsuc 35799 nfwlim 35803 allbutfiinf 45369 infrpgernmpt 45414 liminflelimsuplem 45730 stoweidlem62 46017 fourierdlem31 46093 iunhoiioolem 46630 smfinf 46773 prmdvdsfmtnof1lem1 47508 |
Copyright terms: Public domain | W3C validator |