![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfinf | Structured version Visualization version GIF version |
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
nfinf.1 | ⊢ Ⅎ𝑥𝐴 |
nfinf.2 | ⊢ Ⅎ𝑥𝐵 |
nfinf.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9440 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
5 | 4 | nfcnv 5878 | . . 3 ⊢ Ⅎ𝑥◡𝑅 |
6 | 2, 3, 5 | nfsup 9448 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) |
7 | 1, 6 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2883 ◡ccnv 5675 supcsup 9437 infcinf 9438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-sup 9439 df-inf 9440 |
This theorem is referenced by: iundisj 25289 iundisjf 32075 iundisjfi 32262 nfwsuc 35082 nfwlim 35086 allbutfiinf 44429 infrpgernmpt 44474 liminflelimsuplem 44790 stoweidlem62 45077 fourierdlem31 45153 iunhoiioolem 45690 smfinf 45833 prmdvdsfmtnof1lem1 46551 |
Copyright terms: Public domain | W3C validator |