MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfinf Structured version   Visualization version   GIF version

Theorem nfinf 9434
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
nfinf.1 𝑥𝐴
nfinf.2 𝑥𝐵
nfinf.3 𝑥𝑅
Assertion
Ref Expression
nfinf 𝑥inf(𝐴, 𝐵, 𝑅)

Proof of Theorem nfinf
StepHypRef Expression
1 df-inf 9394 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
2 nfinf.1 . . 3 𝑥𝐴
3 nfinf.2 . . 3 𝑥𝐵
4 nfinf.3 . . . 4 𝑥𝑅
54nfcnv 5842 . . 3 𝑥𝑅
62, 3, 5nfsup 9402 . 2 𝑥sup(𝐴, 𝐵, 𝑅)
71, 6nfcxfr 2889 1 𝑥inf(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  ccnv 5637  supcsup 9391  infcinf 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-sup 9393  df-inf 9394
This theorem is referenced by:  iundisj  25449  iundisjf  32518  iundisjfi  32719  nfwsuc  35806  nfwlim  35810  allbutfiinf  45416  infrpgernmpt  45461  liminflelimsuplem  45773  stoweidlem62  46060  fourierdlem31  46136  iunhoiioolem  46673  smfinf  46816  prmdvdsfmtnof1lem1  47585
  Copyright terms: Public domain W3C validator