![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfinf | Structured version Visualization version GIF version |
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
nfinf.1 | ⊢ Ⅎ𝑥𝐴 |
nfinf.2 | ⊢ Ⅎ𝑥𝐵 |
nfinf.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 9512 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
5 | 4 | nfcnv 5903 | . . 3 ⊢ Ⅎ𝑥◡𝑅 |
6 | 2, 3, 5 | nfsup 9520 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) |
7 | 1, 6 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ◡ccnv 5699 supcsup 9509 infcinf 9510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-sup 9511 df-inf 9512 |
This theorem is referenced by: iundisj 25602 iundisjf 32611 iundisjfi 32801 nfwsuc 35782 nfwlim 35786 allbutfiinf 45335 infrpgernmpt 45380 liminflelimsuplem 45696 stoweidlem62 45983 fourierdlem31 46059 iunhoiioolem 46596 smfinf 46739 prmdvdsfmtnof1lem1 47458 |
Copyright terms: Public domain | W3C validator |