| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfinf | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| nfinf.1 | ⊢ Ⅎ𝑥𝐴 |
| nfinf.2 | ⊢ Ⅎ𝑥𝐵 |
| nfinf.3 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfinf | ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 9334 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
| 2 | nfinf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfinf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfinf.3 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 4 | nfcnv 5822 | . . 3 ⊢ Ⅎ𝑥◡𝑅 |
| 6 | 2, 3, 5 | nfsup 9342 | . 2 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, ◡𝑅) |
| 7 | 1, 6 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 ◡ccnv 5618 supcsup 9331 infcinf 9332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-sup 9333 df-inf 9334 |
| This theorem is referenced by: iundisj 25477 iundisjf 32571 iundisjfi 32783 nfwsuc 35881 nfwlim 35885 allbutfiinf 45542 infrpgernmpt 45587 liminflelimsuplem 45897 stoweidlem62 46184 fourierdlem31 46260 iunhoiioolem 46797 smfinf 46940 prmdvdsfmtnof1lem1 47708 |
| Copyright terms: Public domain | W3C validator |