MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfinf Structured version   Visualization version   GIF version

Theorem nfinf 9522
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
Hypotheses
Ref Expression
nfinf.1 𝑥𝐴
nfinf.2 𝑥𝐵
nfinf.3 𝑥𝑅
Assertion
Ref Expression
nfinf 𝑥inf(𝐴, 𝐵, 𝑅)

Proof of Theorem nfinf
StepHypRef Expression
1 df-inf 9483 . 2 inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
2 nfinf.1 . . 3 𝑥𝐴
3 nfinf.2 . . 3 𝑥𝐵
4 nfinf.3 . . . 4 𝑥𝑅
54nfcnv 5889 . . 3 𝑥𝑅
62, 3, 5nfsup 9491 . 2 𝑥sup(𝐴, 𝐵, 𝑅)
71, 6nfcxfr 2903 1 𝑥inf(𝐴, 𝐵, 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2890  ccnv 5684  supcsup 9480  infcinf 9481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-sup 9482  df-inf 9483
This theorem is referenced by:  iundisj  25583  iundisjf  32602  iundisjfi  32798  nfwsuc  35819  nfwlim  35823  allbutfiinf  45431  infrpgernmpt  45476  liminflelimsuplem  45790  stoweidlem62  46077  fourierdlem31  46153  iunhoiioolem  46690  smfinf  46833  prmdvdsfmtnof1lem1  47571
  Copyright terms: Public domain W3C validator