| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5815 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 5815 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
| 4 | eqss 3951 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3951 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3903 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-br 5093 df-opab 5155 df-cnv 5627 |
| This theorem is referenced by: cnveqi 5817 cnveqd 5818 rneq 5878 cnveqb 6145 predeq123 6250 f1eq1 6715 f1ssf1 6796 f1o00 6799 foeqcnvco 7237 funcnvuni 7865 tposfn2 8181 ereq1 8632 cnvfi 9090 infeq3 9371 1arith 16839 vdwmc 16890 vdwnnlem1 16907 ramub2 16926 rami 16927 isps 18474 istsr 18489 isdir 18504 isrngim 20330 isrim0OLD 20366 isrim0 20368 psrbag 21824 psrbaglefi 21833 iscn 23120 ishmeo 23644 symgtgp 23991 ustincl 24093 ustdiag 24094 ustinvel 24095 ustexhalf 24096 ustexsym 24101 ust0 24105 isi1f 25573 itg1val 25582 fta1lem 26213 fta1 26214 vieta1lem2 26217 vieta1 26218 sqff1o 27090 istrl 29644 isspth 29671 upgrwlkdvspth 29688 uhgrwkspthlem1 29702 0spth 30074 nlfnval 31829 padct 32670 indf1ofs 32818 tocyc01 33069 cycpmconjslem2 33106 ismbfm 34234 issibf 34317 sitgfval 34325 eulerpartlemelr 34341 eulerpartleme 34347 eulerpartlemo 34349 eulerpartlemt0 34353 eulerpartlemt 34355 eulerpartgbij 34356 eulerpartlemr 34358 eulerpartlemgs2 34364 eulerpartlemn 34365 eulerpart 34366 funen1cnv 35071 iscvm 35252 elmpst 35529 elsymrels2 38550 elsymrels4 38552 symreleq 38555 elrefsymrels2 38566 eleqvrels2 38589 eldisjs 38720 lkrval 39087 ltrncnvnid 40126 cdlemkuu 40894 pw2f1o2val 43032 pwfi2f1o 43089 clcnvlem 43616 rfovcnvf1od 43997 fsovrfovd 44002 issmflem 46728 |
| Copyright terms: Public domain | W3C validator |