![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version |
Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5873 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | cnvss 5873 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
3 | 1, 2 | anim12i 614 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
4 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3998 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ◡ccnv 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-br 5150 df-opab 5212 df-cnv 5685 |
This theorem is referenced by: cnveqi 5875 cnveqd 5876 rneq 5936 cnveqb 6196 predeq123 6302 f1eq1 6783 f1ssf1 6866 f1o00 6869 foeqcnvco 7298 funcnvuni 7922 tposfn2 8233 ereq1 8710 cnvfi 9180 infeq3 9475 1arith 16860 vdwmc 16911 vdwnnlem1 16928 ramub2 16947 rami 16948 isps 18521 istsr 18536 isdir 18551 isrim0OLD 20259 isrim0 20261 psrbag 21470 psrbaglefi 21485 psrbaglefiOLD 21486 iscn 22739 ishmeo 23263 symgtgp 23610 ustincl 23712 ustdiag 23713 ustinvel 23714 ustexhalf 23715 ustexsym 23720 ust0 23724 isi1f 25191 itg1val 25200 fta1lem 25820 fta1 25821 vieta1lem2 25824 vieta1 25825 sqff1o 26686 istrl 28984 isspth 29012 upgrwlkdvspth 29027 uhgrwkspthlem1 29041 0spth 29410 nlfnval 31165 padct 31975 tocyc01 32308 cycpmconjslem2 32345 indf1ofs 33055 ismbfm 33280 issibf 33363 sitgfval 33371 eulerpartlemelr 33387 eulerpartleme 33393 eulerpartlemo 33395 eulerpartlemt0 33399 eulerpartlemt 33401 eulerpartgbij 33402 eulerpartlemr 33404 eulerpartlemgs2 33410 eulerpartlemn 33411 eulerpart 33412 funen1cnv 34122 iscvm 34281 elmpst 34558 elsymrels2 37471 elsymrels4 37473 symreleq 37476 elrefsymrels2 37487 eleqvrels2 37510 eldisjs 37640 lkrval 38006 ltrncnvnid 39046 cdlemkuu 39814 pw2f1o2val 41826 pwfi2f1o 41886 clcnvlem 42422 rfovcnvf1od 42803 fsovrfovd 42808 issmflem 45491 isrngisom 46742 |
Copyright terms: Public domain | W3C validator |