| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5836 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 5836 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
| 4 | eqss 3962 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3962 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-cnv 5646 |
| This theorem is referenced by: cnveqi 5838 cnveqd 5839 rneq 5900 cnveqb 6169 predeq123 6275 f1eq1 6751 f1ssf1 6832 f1o00 6835 foeqcnvco 7275 funcnvuni 7908 tposfn2 8227 ereq1 8678 cnvfi 9140 infeq3 9432 1arith 16898 vdwmc 16949 vdwnnlem1 16966 ramub2 16985 rami 16986 isps 18527 istsr 18542 isdir 18557 isrngim 20354 isrim0OLD 20390 isrim0 20392 psrbag 21826 psrbaglefi 21835 iscn 23122 ishmeo 23646 symgtgp 23993 ustincl 24095 ustdiag 24096 ustinvel 24097 ustexhalf 24098 ustexsym 24103 ust0 24107 isi1f 25575 itg1val 25584 fta1lem 26215 fta1 26216 vieta1lem2 26219 vieta1 26220 sqff1o 27092 istrl 29624 isspth 29652 upgrwlkdvspth 29669 uhgrwkspthlem1 29683 0spth 30055 nlfnval 31810 padct 32643 indf1ofs 32789 tocyc01 33075 cycpmconjslem2 33112 ismbfm 34241 issibf 34324 sitgfval 34332 eulerpartlemelr 34348 eulerpartleme 34354 eulerpartlemo 34356 eulerpartlemt0 34360 eulerpartlemt 34362 eulerpartgbij 34363 eulerpartlemr 34365 eulerpartlemgs2 34371 eulerpartlemn 34372 eulerpart 34373 funen1cnv 35078 iscvm 35246 elmpst 35523 elsymrels2 38544 elsymrels4 38546 symreleq 38549 elrefsymrels2 38560 eleqvrels2 38583 eldisjs 38714 lkrval 39081 ltrncnvnid 40121 cdlemkuu 40889 pw2f1o2val 43028 pwfi2f1o 43085 clcnvlem 43612 rfovcnvf1od 43993 fsovrfovd 43998 issmflem 46725 |
| Copyright terms: Public domain | W3C validator |