| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5882 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 5882 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
| 4 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3998 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3950 ◡ccnv 5683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ss 3967 df-br 5143 df-opab 5205 df-cnv 5692 |
| This theorem is referenced by: cnveqi 5884 cnveqd 5885 rneq 5946 cnveqb 6215 predeq123 6321 f1eq1 6798 f1ssf1 6879 f1o00 6882 foeqcnvco 7321 funcnvuni 7955 tposfn2 8274 ereq1 8753 cnvfi 9217 infeq3 9521 1arith 16966 vdwmc 17017 vdwnnlem1 17034 ramub2 17053 rami 17054 isps 18614 istsr 18629 isdir 18644 isrngim 20446 isrim0OLD 20482 isrim0 20484 psrbag 21938 psrbaglefi 21947 iscn 23244 ishmeo 23768 symgtgp 24115 ustincl 24217 ustdiag 24218 ustinvel 24219 ustexhalf 24220 ustexsym 24225 ust0 24229 isi1f 25710 itg1val 25719 fta1lem 26350 fta1 26351 vieta1lem2 26354 vieta1 26355 sqff1o 27226 istrl 29715 isspth 29743 upgrwlkdvspth 29760 uhgrwkspthlem1 29774 0spth 30146 nlfnval 31901 padct 32732 indf1ofs 32852 tocyc01 33139 cycpmconjslem2 33176 ismbfm 34253 issibf 34336 sitgfval 34344 eulerpartlemelr 34360 eulerpartleme 34366 eulerpartlemo 34368 eulerpartlemt0 34372 eulerpartlemt 34374 eulerpartgbij 34375 eulerpartlemr 34377 eulerpartlemgs2 34383 eulerpartlemn 34384 eulerpart 34385 funen1cnv 35103 iscvm 35265 elmpst 35542 elsymrels2 38555 elsymrels4 38557 symreleq 38560 elrefsymrels2 38571 eleqvrels2 38594 eldisjs 38724 lkrval 39090 ltrncnvnid 40130 cdlemkuu 40898 pw2f1o2val 43056 pwfi2f1o 43113 clcnvlem 43641 rfovcnvf1od 44022 fsovrfovd 44027 issmflem 46747 |
| Copyright terms: Public domain | W3C validator |