| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5826 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 5826 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
| 4 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3959 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: cnveqi 5828 cnveqd 5829 rneq 5889 cnveqb 6157 predeq123 6263 f1eq1 6733 f1ssf1 6814 f1o00 6817 foeqcnvco 7257 funcnvuni 7888 tposfn2 8204 ereq1 8655 cnvfi 9117 infeq3 9408 1arith 16875 vdwmc 16926 vdwnnlem1 16943 ramub2 16962 rami 16963 isps 18510 istsr 18525 isdir 18540 isrngim 20366 isrim0OLD 20402 isrim0 20404 psrbag 21860 psrbaglefi 21869 iscn 23156 ishmeo 23680 symgtgp 24027 ustincl 24129 ustdiag 24130 ustinvel 24131 ustexhalf 24132 ustexsym 24137 ust0 24141 isi1f 25609 itg1val 25618 fta1lem 26249 fta1 26250 vieta1lem2 26253 vieta1 26254 sqff1o 27126 istrl 29676 isspth 29703 upgrwlkdvspth 29720 uhgrwkspthlem1 29734 0spth 30106 nlfnval 31861 padct 32694 indf1ofs 32840 tocyc01 33091 cycpmconjslem2 33128 ismbfm 34235 issibf 34318 sitgfval 34326 eulerpartlemelr 34342 eulerpartleme 34348 eulerpartlemo 34350 eulerpartlemt0 34354 eulerpartlemt 34356 eulerpartgbij 34357 eulerpartlemr 34359 eulerpartlemgs2 34365 eulerpartlemn 34366 eulerpart 34367 funen1cnv 35072 iscvm 35240 elmpst 35517 elsymrels2 38538 elsymrels4 38540 symreleq 38543 elrefsymrels2 38554 eleqvrels2 38577 eldisjs 38708 lkrval 39075 ltrncnvnid 40115 cdlemkuu 40883 pw2f1o2val 43022 pwfi2f1o 43079 clcnvlem 43606 rfovcnvf1od 43987 fsovrfovd 43992 issmflem 46719 |
| Copyright terms: Public domain | W3C validator |