![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version |
Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5886 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | cnvss 5886 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
4 | eqss 4011 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 4011 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3963 ◡ccnv 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-br 5149 df-opab 5211 df-cnv 5697 |
This theorem is referenced by: cnveqi 5888 cnveqd 5889 rneq 5950 cnveqb 6218 predeq123 6324 f1eq1 6800 f1ssf1 6881 f1o00 6884 foeqcnvco 7320 funcnvuni 7955 tposfn2 8272 ereq1 8751 cnvfi 9215 infeq3 9518 1arith 16961 vdwmc 17012 vdwnnlem1 17029 ramub2 17048 rami 17049 isps 18626 istsr 18641 isdir 18656 isrngim 20462 isrim0OLD 20498 isrim0 20500 psrbag 21955 psrbaglefi 21964 iscn 23259 ishmeo 23783 symgtgp 24130 ustincl 24232 ustdiag 24233 ustinvel 24234 ustexhalf 24235 ustexsym 24240 ust0 24244 isi1f 25723 itg1val 25732 fta1lem 26364 fta1 26365 vieta1lem2 26368 vieta1 26369 sqff1o 27240 istrl 29729 isspth 29757 upgrwlkdvspth 29772 uhgrwkspthlem1 29786 0spth 30155 nlfnval 31910 padct 32737 tocyc01 33121 cycpmconjslem2 33158 indf1ofs 34007 ismbfm 34232 issibf 34315 sitgfval 34323 eulerpartlemelr 34339 eulerpartleme 34345 eulerpartlemo 34347 eulerpartlemt0 34351 eulerpartlemt 34353 eulerpartgbij 34354 eulerpartlemr 34356 eulerpartlemgs2 34362 eulerpartlemn 34363 eulerpart 34364 funen1cnv 35081 iscvm 35244 elmpst 35521 elsymrels2 38535 elsymrels4 38537 symreleq 38540 elrefsymrels2 38551 eleqvrels2 38574 eldisjs 38704 lkrval 39070 ltrncnvnid 40110 cdlemkuu 40878 pw2f1o2val 43028 pwfi2f1o 43085 clcnvlem 43613 rfovcnvf1od 43994 fsovrfovd 43999 issmflem 46683 |
Copyright terms: Public domain | W3C validator |