| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5857 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 5857 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
| 4 | eqss 3979 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3979 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3931 ◡ccnv 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ss 3948 df-br 5125 df-opab 5187 df-cnv 5667 |
| This theorem is referenced by: cnveqi 5859 cnveqd 5860 rneq 5921 cnveqb 6190 predeq123 6296 f1eq1 6774 f1ssf1 6855 f1o00 6858 foeqcnvco 7298 funcnvuni 7933 tposfn2 8252 ereq1 8731 cnvfi 9195 infeq3 9498 1arith 16952 vdwmc 17003 vdwnnlem1 17020 ramub2 17039 rami 17040 isps 18583 istsr 18598 isdir 18613 isrngim 20410 isrim0OLD 20446 isrim0 20448 psrbag 21882 psrbaglefi 21891 iscn 23178 ishmeo 23702 symgtgp 24049 ustincl 24151 ustdiag 24152 ustinvel 24153 ustexhalf 24154 ustexsym 24159 ust0 24163 isi1f 25632 itg1val 25641 fta1lem 26272 fta1 26273 vieta1lem2 26276 vieta1 26277 sqff1o 27149 istrl 29681 isspth 29709 upgrwlkdvspth 29726 uhgrwkspthlem1 29740 0spth 30112 nlfnval 31867 padct 32702 indf1ofs 32848 tocyc01 33134 cycpmconjslem2 33171 ismbfm 34287 issibf 34370 sitgfval 34378 eulerpartlemelr 34394 eulerpartleme 34400 eulerpartlemo 34402 eulerpartlemt0 34406 eulerpartlemt 34408 eulerpartgbij 34409 eulerpartlemr 34411 eulerpartlemgs2 34417 eulerpartlemn 34418 eulerpart 34419 funen1cnv 35124 iscvm 35286 elmpst 35563 elsymrels2 38576 elsymrels4 38578 symreleq 38581 elrefsymrels2 38592 eleqvrels2 38615 eldisjs 38745 lkrval 39111 ltrncnvnid 40151 cdlemkuu 40919 pw2f1o2val 43038 pwfi2f1o 43095 clcnvlem 43622 rfovcnvf1od 44003 fsovrfovd 44008 issmflem 46736 |
| Copyright terms: Public domain | W3C validator |