| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5826 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 5826 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
| 4 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3959 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: cnveqi 5828 cnveqd 5829 rneq 5889 cnveqb 6157 predeq123 6263 f1eq1 6733 f1ssf1 6814 f1o00 6817 foeqcnvco 7257 funcnvuni 7888 tposfn2 8204 ereq1 8655 cnvfi 9117 infeq3 9408 1arith 16874 vdwmc 16925 vdwnnlem1 16942 ramub2 16961 rami 16962 isps 18509 istsr 18524 isdir 18539 isrngim 20365 isrim0OLD 20401 isrim0 20403 psrbag 21859 psrbaglefi 21868 iscn 23155 ishmeo 23679 symgtgp 24026 ustincl 24128 ustdiag 24129 ustinvel 24130 ustexhalf 24131 ustexsym 24136 ust0 24140 isi1f 25608 itg1val 25617 fta1lem 26248 fta1 26249 vieta1lem2 26252 vieta1 26253 sqff1o 27125 istrl 29675 isspth 29702 upgrwlkdvspth 29719 uhgrwkspthlem1 29733 0spth 30105 nlfnval 31860 padct 32693 indf1ofs 32839 tocyc01 33090 cycpmconjslem2 33127 ismbfm 34234 issibf 34317 sitgfval 34325 eulerpartlemelr 34341 eulerpartleme 34347 eulerpartlemo 34349 eulerpartlemt0 34353 eulerpartlemt 34355 eulerpartgbij 34356 eulerpartlemr 34358 eulerpartlemgs2 34364 eulerpartlemn 34365 eulerpart 34366 funen1cnv 35071 iscvm 35239 elmpst 35516 elsymrels2 38537 elsymrels4 38539 symreleq 38542 elrefsymrels2 38553 eleqvrels2 38576 eldisjs 38707 lkrval 39074 ltrncnvnid 40114 cdlemkuu 40882 pw2f1o2val 43021 pwfi2f1o 43078 clcnvlem 43605 rfovcnvf1od 43986 fsovrfovd 43991 issmflem 46718 |
| Copyright terms: Public domain | W3C validator |