Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version |
Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5770 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | cnvss 5770 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
4 | eqss 3932 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3932 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-cnv 5588 |
This theorem is referenced by: cnveqi 5772 cnveqd 5773 rneq 5834 cnveqb 6088 predeq123 6192 f1eq1 6649 f1ssf1 6731 f1o00 6734 foeqcnvco 7152 funcnvuni 7752 tposfn2 8035 ereq1 8463 cnvfi 8924 infeq3 9169 1arith 16556 vdwmc 16607 vdwnnlem1 16624 ramub2 16643 rami 16644 isps 18201 istsr 18216 isdir 18231 isrim0 19882 psrbag 21030 psrbaglefi 21045 psrbaglefiOLD 21046 iscn 22294 ishmeo 22818 symgtgp 23165 ustincl 23267 ustdiag 23268 ustinvel 23269 ustexhalf 23270 ustexsym 23275 ust0 23279 isi1f 24743 itg1val 24752 fta1lem 25372 fta1 25373 vieta1lem2 25376 vieta1 25377 sqff1o 26236 istrl 27966 isspth 27993 upgrwlkdvspth 28008 uhgrwkspthlem1 28022 0spth 28391 nlfnval 30144 padct 30956 tocyc01 31287 cycpmconjslem2 31324 indf1ofs 31894 ismbfm 32119 issibf 32200 sitgfval 32208 eulerpartlemelr 32224 eulerpartleme 32230 eulerpartlemo 32232 eulerpartlemt0 32236 eulerpartlemt 32238 eulerpartgbij 32239 eulerpartlemr 32241 eulerpartlemgs2 32247 eulerpartlemn 32248 eulerpart 32249 funen1cnv 32960 iscvm 33121 elmpst 33398 elsymrels2 36594 elsymrels4 36596 symreleq 36599 elrefsymrels2 36610 eleqvrels2 36632 eldisjs 36760 lkrval 37029 ltrncnvnid 38068 cdlemkuu 38836 pw2f1o2val 40777 pwfi2f1o 40837 clcnvlem 41120 rfovcnvf1od 41501 fsovrfovd 41506 issmflem 44150 isrngisom 45342 |
Copyright terms: Public domain | W3C validator |