![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version |
Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5897 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | cnvss 5897 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
4 | eqss 4024 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 4024 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-cnv 5708 |
This theorem is referenced by: cnveqi 5899 cnveqd 5900 rneq 5961 cnveqb 6227 predeq123 6333 f1eq1 6812 f1ssf1 6894 f1o00 6897 foeqcnvco 7336 funcnvuni 7972 tposfn2 8289 ereq1 8770 cnvfi 9243 infeq3 9549 1arith 16974 vdwmc 17025 vdwnnlem1 17042 ramub2 17061 rami 17062 isps 18638 istsr 18653 isdir 18668 isrngim 20471 isrim0OLD 20507 isrim0 20509 psrbag 21960 psrbaglefi 21969 iscn 23264 ishmeo 23788 symgtgp 24135 ustincl 24237 ustdiag 24238 ustinvel 24239 ustexhalf 24240 ustexsym 24245 ust0 24249 isi1f 25728 itg1val 25737 fta1lem 26367 fta1 26368 vieta1lem2 26371 vieta1 26372 sqff1o 27243 istrl 29732 isspth 29760 upgrwlkdvspth 29775 uhgrwkspthlem1 29789 0spth 30158 nlfnval 31913 padct 32733 tocyc01 33111 cycpmconjslem2 33148 indf1ofs 33990 ismbfm 34215 issibf 34298 sitgfval 34306 eulerpartlemelr 34322 eulerpartleme 34328 eulerpartlemo 34330 eulerpartlemt0 34334 eulerpartlemt 34336 eulerpartgbij 34337 eulerpartlemr 34339 eulerpartlemgs2 34345 eulerpartlemn 34346 eulerpart 34347 funen1cnv 35064 iscvm 35227 elmpst 35504 elsymrels2 38509 elsymrels4 38511 symreleq 38514 elrefsymrels2 38525 eleqvrels2 38548 eldisjs 38678 lkrval 39044 ltrncnvnid 40084 cdlemkuu 40852 pw2f1o2val 42996 pwfi2f1o 43053 clcnvlem 43585 rfovcnvf1od 43966 fsovrfovd 43971 issmflem 46648 |
Copyright terms: Public domain | W3C validator |