![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version |
Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5873 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | cnvss 5873 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
3 | 1, 2 | anim12i 614 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
4 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3998 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ◡ccnv 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-br 5150 df-opab 5212 df-cnv 5685 |
This theorem is referenced by: cnveqi 5875 cnveqd 5876 rneq 5936 cnveqb 6196 predeq123 6302 f1eq1 6783 f1ssf1 6866 f1o00 6869 foeqcnvco 7298 funcnvuni 7922 tposfn2 8233 ereq1 8710 cnvfi 9180 infeq3 9475 1arith 16860 vdwmc 16911 vdwnnlem1 16928 ramub2 16947 rami 16948 isps 18521 istsr 18536 isdir 18551 isrim0OLD 20259 isrim0 20261 psrbag 21470 psrbaglefi 21485 psrbaglefiOLD 21486 iscn 22739 ishmeo 23263 symgtgp 23610 ustincl 23712 ustdiag 23713 ustinvel 23714 ustexhalf 23715 ustexsym 23720 ust0 23724 isi1f 25191 itg1val 25200 fta1lem 25820 fta1 25821 vieta1lem2 25824 vieta1 25825 sqff1o 26686 istrl 28953 isspth 28981 upgrwlkdvspth 28996 uhgrwkspthlem1 29010 0spth 29379 nlfnval 31134 padct 31944 tocyc01 32277 cycpmconjslem2 32314 indf1ofs 33024 ismbfm 33249 issibf 33332 sitgfval 33340 eulerpartlemelr 33356 eulerpartleme 33362 eulerpartlemo 33364 eulerpartlemt0 33368 eulerpartlemt 33370 eulerpartgbij 33371 eulerpartlemr 33373 eulerpartlemgs2 33379 eulerpartlemn 33380 eulerpart 33381 funen1cnv 34091 iscvm 34250 elmpst 34527 elsymrels2 37423 elsymrels4 37425 symreleq 37428 elrefsymrels2 37439 eleqvrels2 37462 eldisjs 37592 lkrval 37958 ltrncnvnid 38998 cdlemkuu 39766 pw2f1o2val 41778 pwfi2f1o 41838 clcnvlem 42374 rfovcnvf1od 42755 fsovrfovd 42760 issmflem 45443 isrngisom 46694 |
Copyright terms: Public domain | W3C validator |