| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for converse relation. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| cnveq | ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5811 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 5811 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ◡𝐵 ⊆ ◡𝐴) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) |
| 4 | eqss 3945 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3945 | . 2 ⊢ (◡𝐴 = ◡𝐵 ↔ (◡𝐴 ⊆ ◡𝐵 ∧ ◡𝐵 ⊆ ◡𝐴)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3897 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: cnveqi 5813 cnveqd 5814 rneq 5875 cnveqb 6143 predeq123 6249 f1eq1 6714 f1ssf1 6795 f1o00 6798 foeqcnvco 7234 funcnvuni 7862 tposfn2 8178 ereq1 8629 cnvfi 9085 infeq3 9365 1arith 16839 vdwmc 16890 vdwnnlem1 16907 ramub2 16926 rami 16927 isps 18474 istsr 18489 isdir 18504 isrngim 20363 isrim0 20400 psrbag 21854 psrbaglefi 21863 iscn 23150 ishmeo 23674 symgtgp 24021 ustincl 24123 ustdiag 24124 ustinvel 24125 ustexhalf 24126 ustexsym 24131 ust0 24135 isi1f 25602 itg1val 25611 fta1lem 26242 fta1 26243 vieta1lem2 26246 vieta1 26247 sqff1o 27119 istrl 29673 isspth 29700 upgrwlkdvspth 29717 uhgrwkspthlem1 29731 0spth 30106 nlfnval 31861 padct 32701 indf1ofs 32847 tocyc01 33087 cycpmconjslem2 33124 ismbfm 34264 issibf 34346 sitgfval 34354 eulerpartlemelr 34370 eulerpartleme 34376 eulerpartlemo 34378 eulerpartlemt0 34382 eulerpartlemt 34384 eulerpartgbij 34385 eulerpartlemr 34387 eulerpartlemgs2 34393 eulerpartlemn 34394 eulerpart 34395 funen1cnv 35100 iscvm 35303 elmpst 35580 elsymrels2 38648 elsymrels4 38650 symreleq 38653 elrefsymrels2 38664 eleqvrels2 38687 eldisjs 38819 lkrval 39186 ltrncnvnid 40225 cdlemkuu 40993 pw2f1o2val 43131 pwfi2f1o 43188 clcnvlem 43715 rfovcnvf1od 44096 fsovrfovd 44101 issmflem 46824 |
| Copyright terms: Public domain | W3C validator |