Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qinioo Structured version   Visualization version   GIF version

Theorem qinioo 45659
Description: The rational numbers are dense in . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qinioo.a (𝜑𝐴 ∈ ℝ*)
qinioo.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
qinioo (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))

Proof of Theorem qinioo
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . 3 (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
2 qinioo.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
3 qinioo.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
42, 3xrltnled 11187 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
54biimpar 477 . . . . . 6 ((𝜑 ∧ ¬ 𝐵𝐴) → 𝐴 < 𝐵)
62adantr 480 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
73adantr 480 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
8 simpr 484 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
9 qbtwnxr 13101 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵))
106, 7, 8, 9syl3anc 1373 . . . . . . . 8 ((𝜑𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵))
112ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐴 ∈ ℝ*)
123ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐵 ∈ ℝ*)
13 qre 12853 . . . . . . . . . . . . 13 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
1413ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 ∈ ℝ)
15 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐴 < 𝑞)
16 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 < 𝐵)
1711, 12, 14, 15, 16eliood 45622 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵))
1817ex 412 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℚ) → ((𝐴 < 𝑞𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵)))
1918adantlr 715 . . . . . . . . 9 (((𝜑𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵)))
2019reximdva 3146 . . . . . . . 8 ((𝜑𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)))
2110, 20mpd 15 . . . . . . 7 ((𝜑𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))
22 inn0 4321 . . . . . . 7 ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))
2321, 22sylibr 234 . . . . . 6 ((𝜑𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅)
245, 23syldan 591 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅)
2524neneqd 2934 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅)
2625adantlr 715 . . 3 (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅)
271, 26condan 817 . 2 ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵𝐴)
28 ioo0 13272 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
292, 3, 28syl2anc 584 . . . 4 (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
3029biimpar 477 . . 3 ((𝜑𝐵𝐴) → (𝐴(,)𝐵) = ∅)
31 ineq2 4163 . . . 4 ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅))
32 in0 4344 . . . 4 (ℚ ∩ ∅) = ∅
3331, 32eqtrdi 2784 . . 3 ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
3430, 33syl 17 . 2 ((𝜑𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
3527, 34impbida 800 1 (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cin 3897  c0 4282   class class class wbr 5093  (class class class)co 7352  cr 11012  *cxr 11152   < clt 11153  cle 11154  cq 12848  (,)cioo 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-ioo 13251
This theorem is referenced by:  hoiqssbllem3  46746
  Copyright terms: Public domain W3C validator