![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qinioo | Structured version Visualization version GIF version |
Description: The rational numbers are dense in ℝ. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qinioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
qinioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
qinioo | ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 787 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) | |
2 | qinioo.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | qinioo.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | 2, 3 | xrltnled 40377 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
5 | 4 | biimpar 471 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → 𝐴 < 𝐵) |
6 | 2 | adantr 474 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) |
7 | 3 | adantr 474 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) |
8 | simpr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
9 | qbtwnxr 12320 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) | |
10 | 6, 7, 8, 9 | syl3anc 1496 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) |
11 | 2 | ad2antrr 719 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 ∈ ℝ*) |
12 | 3 | ad2antrr 719 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐵 ∈ ℝ*) |
13 | qre 12077 | . . . . . . . . . . . . 13 ⊢ (𝑞 ∈ ℚ → 𝑞 ∈ ℝ) | |
14 | 13 | ad2antlr 720 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ ℝ) |
15 | simprl 789 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 < 𝑞) | |
16 | simprr 791 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 < 𝐵) | |
17 | 11, 12, 14, 15, 16 | eliood 40520 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵)) |
18 | 17 | ex 403 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
19 | 18 | adantlr 708 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
20 | 19 | reximdva 3226 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))) |
21 | 10, 20 | mpd 15 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) |
22 | inn0 40062 | . . . . . . 7 ⊢ ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) | |
23 | 21, 22 | sylibr 226 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
24 | 5, 23 | syldan 587 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
25 | 24 | neneqd 3005 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
26 | 25 | adantlr 708 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
27 | 1, 26 | condan 854 | . 2 ⊢ ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵 ≤ 𝐴) |
28 | ioo0 12489 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
29 | 2, 3, 28 | syl2anc 581 | . . . 4 ⊢ (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
30 | 29 | biimpar 471 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
31 | ineq2 4036 | . . . 4 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅)) | |
32 | in0 4194 | . . . 4 ⊢ (ℚ ∩ ∅) = ∅ | |
33 | 31, 32 | syl6eq 2878 | . . 3 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
34 | 30, 33 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
35 | 27, 34 | impbida 837 | 1 ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 ∃wrex 3119 ∩ cin 3798 ∅c0 4145 class class class wbr 4874 (class class class)co 6906 ℝcr 10252 ℝ*cxr 10391 < clt 10392 ≤ cle 10393 ℚcq 12072 (,)cioo 12464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-sup 8618 df-inf 8619 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-n0 11620 df-z 11706 df-uz 11970 df-q 12073 df-ioo 12468 |
This theorem is referenced by: hoiqssbllem3 41633 |
Copyright terms: Public domain | W3C validator |