![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qinioo | Structured version Visualization version GIF version |
Description: The rational numbers are dense in ℝ. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qinioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
qinioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
qinioo | ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 767 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) | |
2 | qinioo.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | qinioo.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | 2, 3 | xrltnled 44747 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
5 | 4 | biimpar 476 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → 𝐴 < 𝐵) |
6 | 2 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) |
7 | 3 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) |
8 | simpr 483 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
9 | qbtwnxr 13217 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) | |
10 | 6, 7, 8, 9 | syl3anc 1368 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) |
11 | 2 | ad2antrr 724 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 ∈ ℝ*) |
12 | 3 | ad2antrr 724 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐵 ∈ ℝ*) |
13 | qre 12973 | . . . . . . . . . . . . 13 ⊢ (𝑞 ∈ ℚ → 𝑞 ∈ ℝ) | |
14 | 13 | ad2antlr 725 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ ℝ) |
15 | simprl 769 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 < 𝑞) | |
16 | simprr 771 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 < 𝐵) | |
17 | 11, 12, 14, 15, 16 | eliood 44885 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵)) |
18 | 17 | ex 411 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
19 | 18 | adantlr 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
20 | 19 | reximdva 3164 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))) |
21 | 10, 20 | mpd 15 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) |
22 | inn0 44442 | . . . . . . 7 ⊢ ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) | |
23 | 21, 22 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
24 | 5, 23 | syldan 589 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
25 | 24 | neneqd 2941 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
26 | 25 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
27 | 1, 26 | condan 816 | . 2 ⊢ ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵 ≤ 𝐴) |
28 | ioo0 13387 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
29 | 2, 3, 28 | syl2anc 582 | . . . 4 ⊢ (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
30 | 29 | biimpar 476 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
31 | ineq2 4206 | . . . 4 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅)) | |
32 | in0 4393 | . . . 4 ⊢ (ℚ ∩ ∅) = ∅ | |
33 | 31, 32 | eqtrdi 2783 | . . 3 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
34 | 30, 33 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
35 | 27, 34 | impbida 799 | 1 ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ∃wrex 3066 ∩ cin 3946 ∅c0 4324 class class class wbr 5150 (class class class)co 7424 ℝcr 11143 ℝ*cxr 11283 < clt 11284 ≤ cle 11285 ℚcq 12968 (,)cioo 13362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-q 12969 df-ioo 13366 |
This theorem is referenced by: hoiqssbllem3 46014 |
Copyright terms: Public domain | W3C validator |