![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qinioo | Structured version Visualization version GIF version |
Description: The rational numbers are dense in ℝ. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qinioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
qinioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
qinioo | ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) | |
2 | qinioo.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | qinioo.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | 2, 3 | xrltnled 44626 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
5 | 4 | biimpar 477 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → 𝐴 < 𝐵) |
6 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) |
7 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) |
8 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
9 | qbtwnxr 13182 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) | |
10 | 6, 7, 8, 9 | syl3anc 1368 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) |
11 | 2 | ad2antrr 723 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 ∈ ℝ*) |
12 | 3 | ad2antrr 723 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐵 ∈ ℝ*) |
13 | qre 12938 | . . . . . . . . . . . . 13 ⊢ (𝑞 ∈ ℚ → 𝑞 ∈ ℝ) | |
14 | 13 | ad2antlr 724 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ ℝ) |
15 | simprl 768 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 < 𝑞) | |
16 | simprr 770 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 < 𝐵) | |
17 | 11, 12, 14, 15, 16 | eliood 44764 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵)) |
18 | 17 | ex 412 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
19 | 18 | adantlr 712 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
20 | 19 | reximdva 3162 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))) |
21 | 10, 20 | mpd 15 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) |
22 | inn0 44318 | . . . . . . 7 ⊢ ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) | |
23 | 21, 22 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
24 | 5, 23 | syldan 590 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
25 | 24 | neneqd 2939 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
26 | 25 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
27 | 1, 26 | condan 815 | . 2 ⊢ ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵 ≤ 𝐴) |
28 | ioo0 13352 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
29 | 2, 3, 28 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
30 | 29 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
31 | ineq2 4201 | . . . 4 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅)) | |
32 | in0 4386 | . . . 4 ⊢ (ℚ ∩ ∅) = ∅ | |
33 | 31, 32 | eqtrdi 2782 | . . 3 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
34 | 30, 33 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
35 | 27, 34 | impbida 798 | 1 ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∃wrex 3064 ∩ cin 3942 ∅c0 4317 class class class wbr 5141 (class class class)co 7404 ℝcr 11108 ℝ*cxr 11248 < clt 11249 ≤ cle 11250 ℚcq 12933 (,)cioo 13327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-ioo 13331 |
This theorem is referenced by: hoiqssbllem3 45893 |
Copyright terms: Public domain | W3C validator |