Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qinioo Structured version   Visualization version   GIF version

Theorem qinioo 42963
Description: The rational numbers are dense in . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qinioo.a (𝜑𝐴 ∈ ℝ*)
qinioo.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
qinioo (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))

Proof of Theorem qinioo
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simplr 765 . . 3 (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
2 qinioo.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
3 qinioo.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
42, 3xrltnled 42792 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
54biimpar 477 . . . . . 6 ((𝜑 ∧ ¬ 𝐵𝐴) → 𝐴 < 𝐵)
62adantr 480 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
73adantr 480 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
8 simpr 484 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
9 qbtwnxr 12863 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵))
106, 7, 8, 9syl3anc 1369 . . . . . . . 8 ((𝜑𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵))
112ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐴 ∈ ℝ*)
123ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐵 ∈ ℝ*)
13 qre 12622 . . . . . . . . . . . . 13 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
1413ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 ∈ ℝ)
15 simprl 767 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐴 < 𝑞)
16 simprr 769 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 < 𝐵)
1711, 12, 14, 15, 16eliood 42926 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵))
1817ex 412 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℚ) → ((𝐴 < 𝑞𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵)))
1918adantlr 711 . . . . . . . . 9 (((𝜑𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵)))
2019reximdva 3202 . . . . . . . 8 ((𝜑𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)))
2110, 20mpd 15 . . . . . . 7 ((𝜑𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))
22 inn0 42512 . . . . . . 7 ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))
2321, 22sylibr 233 . . . . . 6 ((𝜑𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅)
245, 23syldan 590 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅)
2524neneqd 2947 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅)
2625adantlr 711 . . 3 (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅)
271, 26condan 814 . 2 ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵𝐴)
28 ioo0 13033 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
292, 3, 28syl2anc 583 . . . 4 (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
3029biimpar 477 . . 3 ((𝜑𝐵𝐴) → (𝐴(,)𝐵) = ∅)
31 ineq2 4137 . . . 4 ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅))
32 in0 4322 . . . 4 (ℚ ∩ ∅) = ∅
3331, 32eqtrdi 2795 . . 3 ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
3430, 33syl 17 . 2 ((𝜑𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
3527, 34impbida 797 1 (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cin 3882  c0 4253   class class class wbr 5070  (class class class)co 7255  cr 10801  *cxr 10939   < clt 10940  cle 10941  cq 12617  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-ioo 13012
This theorem is referenced by:  hoiqssbllem3  44052
  Copyright terms: Public domain W3C validator