Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qinioo Structured version   Visualization version   GIF version

Theorem qinioo 44922
Description: The rational numbers are dense in . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qinioo.a (𝜑𝐴 ∈ ℝ*)
qinioo.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
qinioo (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))

Proof of Theorem qinioo
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . 3 (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
2 qinioo.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
3 qinioo.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
42, 3xrltnled 44747 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
54biimpar 476 . . . . . 6 ((𝜑 ∧ ¬ 𝐵𝐴) → 𝐴 < 𝐵)
62adantr 479 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
73adantr 479 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
8 simpr 483 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
9 qbtwnxr 13217 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵))
106, 7, 8, 9syl3anc 1368 . . . . . . . 8 ((𝜑𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵))
112ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐴 ∈ ℝ*)
123ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐵 ∈ ℝ*)
13 qre 12973 . . . . . . . . . . . . 13 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
1413ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 ∈ ℝ)
15 simprl 769 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐴 < 𝑞)
16 simprr 771 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 < 𝐵)
1711, 12, 14, 15, 16eliood 44885 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵))
1817ex 411 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℚ) → ((𝐴 < 𝑞𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵)))
1918adantlr 713 . . . . . . . . 9 (((𝜑𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵)))
2019reximdva 3164 . . . . . . . 8 ((𝜑𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)))
2110, 20mpd 15 . . . . . . 7 ((𝜑𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))
22 inn0 44442 . . . . . . 7 ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))
2321, 22sylibr 233 . . . . . 6 ((𝜑𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅)
245, 23syldan 589 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅)
2524neneqd 2941 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅)
2625adantlr 713 . . 3 (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅)
271, 26condan 816 . 2 ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵𝐴)
28 ioo0 13387 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
292, 3, 28syl2anc 582 . . . 4 (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
3029biimpar 476 . . 3 ((𝜑𝐵𝐴) → (𝐴(,)𝐵) = ∅)
31 ineq2 4206 . . . 4 ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅))
32 in0 4393 . . . 4 (ℚ ∩ ∅) = ∅
3331, 32eqtrdi 2783 . . 3 ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
3430, 33syl 17 . 2 ((𝜑𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
3527, 34impbida 799 1 (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2936  wrex 3066  cin 3946  c0 4324   class class class wbr 5150  (class class class)co 7424  cr 11143  *cxr 11283   < clt 11284  cle 11285  cq 12968  (,)cioo 13362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-q 12969  df-ioo 13366
This theorem is referenced by:  hoiqssbllem3  46014
  Copyright terms: Public domain W3C validator