![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qinioo | Structured version Visualization version GIF version |
Description: The rational numbers are dense in ℝ. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qinioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
qinioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
qinioo | ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 767 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) | |
2 | qinioo.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | qinioo.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | 2, 3 | xrltnled 44059 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
5 | 4 | biimpar 478 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → 𝐴 < 𝐵) |
6 | 2 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) |
7 | 3 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) |
8 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
9 | qbtwnxr 13175 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) | |
10 | 6, 7, 8, 9 | syl3anc 1371 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) |
11 | 2 | ad2antrr 724 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 ∈ ℝ*) |
12 | 3 | ad2antrr 724 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐵 ∈ ℝ*) |
13 | qre 12933 | . . . . . . . . . . . . 13 ⊢ (𝑞 ∈ ℚ → 𝑞 ∈ ℝ) | |
14 | 13 | ad2antlr 725 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ ℝ) |
15 | simprl 769 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 < 𝑞) | |
16 | simprr 771 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 < 𝐵) | |
17 | 11, 12, 14, 15, 16 | eliood 44197 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵)) |
18 | 17 | ex 413 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
19 | 18 | adantlr 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
20 | 19 | reximdva 3168 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))) |
21 | 10, 20 | mpd 15 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) |
22 | inn0 43747 | . . . . . . 7 ⊢ ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) | |
23 | 21, 22 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
24 | 5, 23 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
25 | 24 | neneqd 2945 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
26 | 25 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
27 | 1, 26 | condan 816 | . 2 ⊢ ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵 ≤ 𝐴) |
28 | ioo0 13345 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
29 | 2, 3, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
30 | 29 | biimpar 478 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
31 | ineq2 4205 | . . . 4 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅)) | |
32 | in0 4390 | . . . 4 ⊢ (ℚ ∩ ∅) = ∅ | |
33 | 31, 32 | eqtrdi 2788 | . . 3 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
34 | 30, 33 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
35 | 27, 34 | impbida 799 | 1 ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∃wrex 3070 ∩ cin 3946 ∅c0 4321 class class class wbr 5147 (class class class)co 7405 ℝcr 11105 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 ℚcq 12928 (,)cioo 13320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-ioo 13324 |
This theorem is referenced by: hoiqssbllem3 45326 |
Copyright terms: Public domain | W3C validator |