| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qinioo | Structured version Visualization version GIF version | ||
| Description: The rational numbers are dense in ℝ. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| qinioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| qinioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| qinioo | ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 769 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) | |
| 2 | qinioo.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 3 | qinioo.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | 2, 3 | xrltnled 45374 | . . . . . . 7 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 5 | 4 | biimpar 477 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → 𝐴 < 𝐵) |
| 6 | 2 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*) |
| 7 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*) |
| 8 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 9 | qbtwnxr 13242 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) |
| 11 | 2 | ad2antrr 726 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 ∈ ℝ*) |
| 12 | 3 | ad2antrr 726 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐵 ∈ ℝ*) |
| 13 | qre 12995 | . . . . . . . . . . . . 13 ⊢ (𝑞 ∈ ℚ → 𝑞 ∈ ℝ) | |
| 14 | 13 | ad2antlr 727 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ ℝ) |
| 15 | simprl 771 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝐴 < 𝑞) | |
| 16 | simprr 773 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 < 𝐵) | |
| 17 | 11, 12, 14, 15, 16 | eliood 45511 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵)) |
| 18 | 17 | ex 412 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
| 19 | 18 | adantlr 715 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵))) |
| 20 | 19 | reximdva 3168 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞 ∧ 𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))) |
| 21 | 10, 20 | mpd 15 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) |
| 22 | inn0 4372 | . . . . . . 7 ⊢ ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)) | |
| 23 | 21, 22 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
| 24 | 5, 23 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅) |
| 25 | 24 | neneqd 2945 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
| 26 | 25 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵 ≤ 𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
| 27 | 1, 26 | condan 818 | . 2 ⊢ ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵 ≤ 𝐴) |
| 28 | ioo0 13412 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
| 29 | 2, 3, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| 30 | 29 | biimpar 477 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
| 31 | ineq2 4214 | . . . 4 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅)) | |
| 32 | in0 4395 | . . . 4 ⊢ (ℚ ∩ ∅) = ∅ | |
| 33 | 31, 32 | eqtrdi 2793 | . . 3 ⊢ ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
| 34 | 30, 33 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅) |
| 35 | 27, 34 | impbida 801 | 1 ⊢ (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∩ cin 3950 ∅c0 4333 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 ℚcq 12990 (,)cioo 13387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-ioo 13391 |
| This theorem is referenced by: hoiqssbllem3 46639 |
| Copyright terms: Public domain | W3C validator |