Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qinioo Structured version   Visualization version   GIF version

Theorem qinioo 42172
Description: The rational numbers are dense in . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qinioo.a (𝜑𝐴 ∈ ℝ*)
qinioo.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
qinioo (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))

Proof of Theorem qinioo
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . 3 (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
2 qinioo.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
3 qinioo.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
42, 3xrltnled 41995 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
54biimpar 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐵𝐴) → 𝐴 < 𝐵)
62adantr 484 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
73adantr 484 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
8 simpr 488 . . . . . . . . 9 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
9 qbtwnxr 12581 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵))
106, 7, 8, 9syl3anc 1368 . . . . . . . 8 ((𝜑𝐴 < 𝐵) → ∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵))
112ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐴 ∈ ℝ*)
123ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐵 ∈ ℝ*)
13 qre 12341 . . . . . . . . . . . . 13 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
1413ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 ∈ ℝ)
15 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝐴 < 𝑞)
16 simprr 772 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 < 𝐵)
1711, 12, 14, 15, 16eliood 42135 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℚ) ∧ (𝐴 < 𝑞𝑞 < 𝐵)) → 𝑞 ∈ (𝐴(,)𝐵))
1817ex 416 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℚ) → ((𝐴 < 𝑞𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵)))
1918adantlr 714 . . . . . . . . 9 (((𝜑𝐴 < 𝐵) ∧ 𝑞 ∈ ℚ) → ((𝐴 < 𝑞𝑞 < 𝐵) → 𝑞 ∈ (𝐴(,)𝐵)))
2019reximdva 3233 . . . . . . . 8 ((𝜑𝐴 < 𝐵) → (∃𝑞 ∈ ℚ (𝐴 < 𝑞𝑞 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵)))
2110, 20mpd 15 . . . . . . 7 ((𝜑𝐴 < 𝐵) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))
22 inn0 41709 . . . . . . 7 ((ℚ ∩ (𝐴(,)𝐵)) ≠ ∅ ↔ ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐴(,)𝐵))
2321, 22sylibr 237 . . . . . 6 ((𝜑𝐴 < 𝐵) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅)
245, 23syldan 594 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) ≠ ∅)
2524neneqd 2992 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅)
2625adantlr 714 . . 3 (((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) ∧ ¬ 𝐵𝐴) → ¬ (ℚ ∩ (𝐴(,)𝐵)) = ∅)
271, 26condan 817 . 2 ((𝜑 ∧ (ℚ ∩ (𝐴(,)𝐵)) = ∅) → 𝐵𝐴)
28 ioo0 12751 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
292, 3, 28syl2anc 587 . . . 4 (𝜑 → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
3029biimpar 481 . . 3 ((𝜑𝐵𝐴) → (𝐴(,)𝐵) = ∅)
31 ineq2 4133 . . . 4 ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = (ℚ ∩ ∅))
32 in0 4299 . . . 4 (ℚ ∩ ∅) = ∅
3331, 32eqtrdi 2849 . . 3 ((𝐴(,)𝐵) = ∅ → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
3430, 33syl 17 . 2 ((𝜑𝐵𝐴) → (ℚ ∩ (𝐴(,)𝐵)) = ∅)
3527, 34impbida 800 1 (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cin 3880  c0 4243   class class class wbr 5030  (class class class)co 7135  cr 10525  *cxr 10663   < clt 10664  cle 10665  cq 12336  (,)cioo 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730
This theorem is referenced by:  hoiqssbllem3  43263
  Copyright terms: Public domain W3C validator