Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inn0f | Structured version Visualization version GIF version |
Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
inn0f.1 | ⊢ Ⅎ𝑥𝐴 |
inn0f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
inn0f | ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | exbii 1850 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
3 | inn0f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | inn0f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 3, 4 | nfin 4150 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
6 | 5 | n0f 4276 | . 2 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵)) |
7 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
8 | 2, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 Ⅎwnfc 2887 ≠ wne 2943 ∃wrex 3065 ∩ cin 3886 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-nul 4257 |
This theorem is referenced by: inn0 42623 |
Copyright terms: Public domain | W3C validator |