![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpssmapc | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
ixpssmapc.x | ⊢ Ⅎ𝑥𝜑 |
ixpssmapc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
ixpssmapc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
ixpssmapc | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpssmapc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
2 | ixpssmapc.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
3 | ixpssmapc.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
4 | 3 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
5 | 2, 4 | ralrimi 3246 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
6 | iunss 5038 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
7 | 5, 6 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
8 | 1, 7 | ssexd 5314 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
9 | ixpssmap2g 8916 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
11 | mapss 8878 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ⊆ (𝐶 ↑m 𝐴)) | |
12 | 1, 7, 11 | syl2anc 583 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ⊆ (𝐶 ↑m 𝐴)) |
13 | 10, 12 | sstrd 3984 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1777 ∈ wcel 2098 ∀wral 3053 Vcvv 3466 ⊆ wss 3940 ∪ ciun 4987 (class class class)co 7401 ↑m cmap 8815 Xcixp 8886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8817 df-ixp 8887 |
This theorem is referenced by: ioorrnopnlem 45471 |
Copyright terms: Public domain | W3C validator |