| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpssmapc | Structured version Visualization version GIF version | ||
| Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| ixpssmapc.x | ⊢ Ⅎ𝑥𝜑 |
| ixpssmapc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| ixpssmapc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| ixpssmapc | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpssmapc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 2 | ixpssmapc.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 3 | ixpssmapc.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
| 4 | 3 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
| 5 | 2, 4 | ralrimi 3235 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 6 | iunss 5009 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 7 | 5, 6 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 8 | 1, 7 | ssexd 5279 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 9 | ixpssmap2g 8900 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
| 11 | mapss 8862 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ⊆ (𝐶 ↑m 𝐴)) | |
| 12 | 1, 7, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ⊆ (𝐶 ↑m 𝐴)) |
| 13 | 10, 12 | sstrd 3957 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 ∪ ciun 4955 (class class class)co 7387 ↑m cmap 8799 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 |
| This theorem is referenced by: ioorrnopnlem 46302 |
| Copyright terms: Public domain | W3C validator |