Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpssmapc Structured version   Visualization version   GIF version

Theorem ixpssmapc 44215
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ixpssmapc.x 𝑥𝜑
ixpssmapc.c (𝜑𝐶𝑉)
ixpssmapc.b ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
ixpssmapc (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶m 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmapc
StepHypRef Expression
1 ixpssmapc.c . . . 4 (𝜑𝐶𝑉)
2 ixpssmapc.x . . . . . 6 𝑥𝜑
3 ixpssmapc.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
43ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝐶))
52, 4ralrimi 3246 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
6 iunss 5038 . . . . 5 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
75, 6sylibr 233 . . . 4 (𝜑 𝑥𝐴 𝐵𝐶)
81, 7ssexd 5314 . . 3 (𝜑 𝑥𝐴 𝐵 ∈ V)
9 ixpssmap2g 8916 . . 3 ( 𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
108, 9syl 17 . 2 (𝜑X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
11 mapss 8878 . . 3 ((𝐶𝑉 𝑥𝐴 𝐵𝐶) → ( 𝑥𝐴 𝐵m 𝐴) ⊆ (𝐶m 𝐴))
121, 7, 11syl2anc 583 . 2 (𝜑 → ( 𝑥𝐴 𝐵m 𝐴) ⊆ (𝐶m 𝐴))
1310, 12sstrd 3984 1 (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1777  wcel 2098  wral 3053  Vcvv 3466  wss 3940   ciun 4987  (class class class)co 7401  m cmap 8815  Xcixp 8886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8817  df-ixp 8887
This theorem is referenced by:  ioorrnopnlem  45471
  Copyright terms: Public domain W3C validator