Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpssmapc Structured version   Visualization version   GIF version

Theorem ixpssmapc 45074
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ixpssmapc.x 𝑥𝜑
ixpssmapc.c (𝜑𝐶𝑉)
ixpssmapc.b ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
ixpssmapc (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶m 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmapc
StepHypRef Expression
1 ixpssmapc.c . . . 4 (𝜑𝐶𝑉)
2 ixpssmapc.x . . . . . 6 𝑥𝜑
3 ixpssmapc.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
43ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝐶))
52, 4ralrimi 3236 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
6 iunss 5012 . . . . 5 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
75, 6sylibr 234 . . . 4 (𝜑 𝑥𝐴 𝐵𝐶)
81, 7ssexd 5282 . . 3 (𝜑 𝑥𝐴 𝐵 ∈ V)
9 ixpssmap2g 8903 . . 3 ( 𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
108, 9syl 17 . 2 (𝜑X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
11 mapss 8865 . . 3 ((𝐶𝑉 𝑥𝐴 𝐵𝐶) → ( 𝑥𝐴 𝐵m 𝐴) ⊆ (𝐶m 𝐴))
121, 7, 11syl2anc 584 . 2 (𝜑 → ( 𝑥𝐴 𝐵m 𝐴) ⊆ (𝐶m 𝐴))
1310, 12sstrd 3960 1 (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wral 3045  Vcvv 3450  wss 3917   ciun 4958  (class class class)co 7390  m cmap 8802  Xcixp 8873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874
This theorem is referenced by:  ioorrnopnlem  46309
  Copyright terms: Public domain W3C validator