Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpssmapc Structured version   Visualization version   GIF version

Theorem ixpssmapc 40793
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ixpssmapc.x 𝑥𝜑
ixpssmapc.c (𝜑𝐶𝑉)
ixpssmapc.b ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
ixpssmapc (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶𝑚 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmapc
StepHypRef Expression
1 ixpssmapc.c . . . 4 (𝜑𝐶𝑉)
2 ixpssmapc.x . . . . . 6 𝑥𝜑
3 ixpssmapc.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
43ex 405 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝐶))
52, 4ralrimi 3159 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
6 iunss 4831 . . . . 5 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
75, 6sylibr 226 . . . 4 (𝜑 𝑥𝐴 𝐵𝐶)
81, 7ssexd 5080 . . 3 (𝜑 𝑥𝐴 𝐵 ∈ V)
9 ixpssmap2g 8286 . . 3 ( 𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
108, 9syl 17 . 2 (𝜑X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
11 mapss 8249 . . 3 ((𝐶𝑉 𝑥𝐴 𝐵𝐶) → ( 𝑥𝐴 𝐵𝑚 𝐴) ⊆ (𝐶𝑚 𝐴))
121, 7, 11syl2anc 576 . 2 (𝜑 → ( 𝑥𝐴 𝐵𝑚 𝐴) ⊆ (𝐶𝑚 𝐴))
1310, 12sstrd 3861 1 (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wnf 1747  wcel 2051  wral 3081  Vcvv 3408  wss 3822   ciun 4788  (class class class)co 6974  𝑚 cmap 8204  Xcixp 8257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-map 8206  df-ixp 8258
This theorem is referenced by:  ioorrnopnlem  42054
  Copyright terms: Public domain W3C validator