Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ixpssmapc Structured version   Visualization version   GIF version

Theorem ixpssmapc 45195
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
ixpssmapc.x 𝑥𝜑
ixpssmapc.c (𝜑𝐶𝑉)
ixpssmapc.b ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
ixpssmapc (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶m 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmapc
StepHypRef Expression
1 ixpssmapc.c . . . 4 (𝜑𝐶𝑉)
2 ixpssmapc.x . . . . . 6 𝑥𝜑
3 ixpssmapc.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
43ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝐶))
52, 4ralrimi 3231 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
6 iunss 4995 . . . . 5 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
75, 6sylibr 234 . . . 4 (𝜑 𝑥𝐴 𝐵𝐶)
81, 7ssexd 5264 . . 3 (𝜑 𝑥𝐴 𝐵 ∈ V)
9 ixpssmap2g 8857 . . 3 ( 𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
108, 9syl 17 . 2 (𝜑X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
11 mapss 8819 . . 3 ((𝐶𝑉 𝑥𝐴 𝐵𝐶) → ( 𝑥𝐴 𝐵m 𝐴) ⊆ (𝐶m 𝐴))
121, 7, 11syl2anc 584 . 2 (𝜑 → ( 𝑥𝐴 𝐵m 𝐴) ⊆ (𝐶m 𝐴))
1310, 12sstrd 3941 1 (𝜑X𝑥𝐴 𝐵 ⊆ (𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1784  wcel 2113  wral 3048  Vcvv 3437  wss 3898   ciun 4941  (class class class)co 7352  m cmap 8756  Xcixp 8827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828
This theorem is referenced by:  ioorrnopnlem  46427
  Copyright terms: Public domain W3C validator