Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpssmapc | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
ixpssmapc.x | ⊢ Ⅎ𝑥𝜑 |
ixpssmapc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
ixpssmapc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
ixpssmapc | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpssmapc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
2 | ixpssmapc.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
3 | ixpssmapc.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
4 | 3 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
5 | 2, 4 | ralrimi 3139 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
6 | iunss 4971 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
7 | 5, 6 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
8 | 1, 7 | ssexd 5243 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
9 | ixpssmap2g 8673 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
11 | mapss 8635 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ⊆ (𝐶 ↑m 𝐴)) | |
12 | 1, 7, 11 | syl2anc 583 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ⊆ (𝐶 ↑m 𝐴)) |
13 | 10, 12 | sstrd 3927 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∪ ciun 4921 (class class class)co 7255 ↑m cmap 8573 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-ixp 8644 |
This theorem is referenced by: ioorrnopnlem 43735 |
Copyright terms: Public domain | W3C validator |