![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpssmapc | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
ixpssmapc.x | ⊢ Ⅎ𝑥𝜑 |
ixpssmapc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
ixpssmapc.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
ixpssmapc | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑𝑚 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpssmapc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
2 | ixpssmapc.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
3 | ixpssmapc.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
4 | 3 | ex 405 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
5 | 2, 4 | ralrimi 3159 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
6 | iunss 4831 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
7 | 5, 6 | sylibr 226 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
8 | 1, 7 | ssexd 5080 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
9 | ixpssmap2g 8286 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
11 | mapss 8249 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) ⊆ (𝐶 ↑𝑚 𝐴)) | |
12 | 1, 7, 11 | syl2anc 576 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) ⊆ (𝐶 ↑𝑚 𝐴)) |
13 | 10, 12 | sstrd 3861 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑𝑚 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 Ⅎwnf 1747 ∈ wcel 2051 ∀wral 3081 Vcvv 3408 ⊆ wss 3822 ∪ ciun 4788 (class class class)co 6974 ↑𝑚 cmap 8204 Xcixp 8257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-map 8206 df-ixp 8258 |
This theorem is referenced by: ioorrnopnlem 42054 |
Copyright terms: Public domain | W3C validator |