Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eusvobj1 | Structured version Visualization version GIF version |
Description: Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
eusvobj1.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
eusvobj1 | ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2586 | . . 3 ⊢ Ⅎ𝑥∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
2 | eusvobj1.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | eusvobj2 7329 | . . 3 ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
4 | 1, 3 | alrimi 2205 | . 2 ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀𝑥(∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
5 | iotabi 6445 | . 2 ⊢ (∀𝑥(∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | |
6 | 4, 5 | syl 17 | 1 ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∃!weu 2566 ∀wral 3061 ∃wrex 3070 Vcvv 3441 ℩cio 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4270 df-sn 4574 df-uni 4853 df-iota 6431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |