MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvobj1 Structured version   Visualization version   GIF version

Theorem eusvobj1 7330
Description: Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypothesis
Ref Expression
eusvobj1.1 𝐵 ∈ V
Assertion
Ref Expression
eusvobj1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem eusvobj1
StepHypRef Expression
1 nfeu1 2586 . . 3 𝑥∃!𝑥𝑦𝐴 𝑥 = 𝐵
2 eusvobj1.1 . . . 4 𝐵 ∈ V
32eusvobj2 7329 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
41, 3alrimi 2205 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∀𝑥(∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
5 iotabi 6445 . 2 (∀𝑥(∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵) → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
64, 5syl 17 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538   = wceq 1540  wcel 2105  ∃!weu 2566  wral 3061  wrex 3070  Vcvv 3441  cio 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4270  df-sn 4574  df-uni 4853  df-iota 6431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator