![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eusvobj1 | Structured version Visualization version GIF version |
Description: Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
eusvobj1.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
eusvobj1 | ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2591 | . . 3 ⊢ Ⅎ𝑥∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
2 | eusvobj1.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | eusvobj2 7440 | . . 3 ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
4 | 1, 3 | alrimi 2214 | . 2 ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀𝑥(∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
5 | iotabi 6539 | . 2 ⊢ (∀𝑥(∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | |
6 | 4, 5 | syl 17 | 1 ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-ss 3993 df-nul 4353 df-sn 4649 df-uni 4932 df-iota 6525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |