MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvobj1 Structured version   Visualization version   GIF version

Theorem eusvobj1 7398
Description: Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypothesis
Ref Expression
eusvobj1.1 𝐵 ∈ V
Assertion
Ref Expression
eusvobj1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem eusvobj1
StepHypRef Expression
1 nfeu1 2587 . . 3 𝑥∃!𝑥𝑦𝐴 𝑥 = 𝐵
2 eusvobj1.1 . . . 4 𝐵 ∈ V
32eusvobj2 7397 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
41, 3alrimi 2213 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∀𝑥(∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
5 iotabi 6497 . 2 (∀𝑥(∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵) → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
64, 5syl 17 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2108  ∃!weu 2567  wral 3051  wrex 3060  Vcvv 3459  cio 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-ss 3943  df-nul 4309  df-sn 4602  df-uni 4884  df-iota 6484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator