MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvobj1 Structured version   Visualization version   GIF version

Theorem eusvobj1 7424
Description: Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypothesis
Ref Expression
eusvobj1.1 𝐵 ∈ V
Assertion
Ref Expression
eusvobj1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem eusvobj1
StepHypRef Expression
1 nfeu1 2586 . . 3 𝑥∃!𝑥𝑦𝐴 𝑥 = 𝐵
2 eusvobj1.1 . . . 4 𝐵 ∈ V
32eusvobj2 7423 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
41, 3alrimi 2211 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∀𝑥(∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
5 iotabi 6529 . 2 (∀𝑥(∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵) → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
64, 5syl 17 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (℩𝑥𝑦𝐴 𝑥 = 𝐵) = (℩𝑥𝑦𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2106  ∃!weu 2566  wral 3059  wrex 3068  Vcvv 3478  cio 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-ss 3980  df-nul 4340  df-sn 4632  df-uni 4913  df-iota 6516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator