| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 6497 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ℩cio 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 df-iota 6484 |
| This theorem is referenced by: csbiota 6524 dffv3 6872 fveq1 6875 fveq2 6876 fvres 6895 csbfv12 6924 opabiota 6961 fvco2 6976 fvopab5 7019 riotaeqdv 7363 riotabidv 7364 riotabidva 7381 erov 8828 iunfictbso 10128 isf32lem9 10375 shftval 15093 sumeq1 15705 sumeq2w 15708 sumeq2ii 15709 sumeq2sdv 15719 zsum 15734 isumclim3 15775 isumshft 15855 prodeq1f 15922 prodeq1 15923 prodeq2w 15926 prodeq2ii 15927 prodeq2sdv 15939 zprod 15953 iprodclim3 16016 pcval 16864 grpidval 18639 grpidpropd 18640 gsumvalx 18654 gsumpropd 18656 gsumpropd2lem 18657 gsumress 18660 psgnfval 19481 psgnval 19488 psgndif 21562 dchrptlem1 27227 lgsdchrval 27317 nosupcbv 27666 nosupfv 27670 noinfcbv 27681 noinffv 27685 ajval 30842 adjval 31871 urpropd 33227 resv1r 33355 opprqus0g 33505 prodeq12sdv 36236 cbvsumdavw 36297 cbvproddavw 36298 cbvsumdavw2 36313 cbvproddavw2 36314 bj-finsumval0 37303 uncov 37625 afv2eq12d 47244 funressndmafv2rn 47252 afv2res 47268 dfafv23 47282 afv2co2 47286 |
| Copyright terms: Public domain | W3C validator |