| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1928 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 6446 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ℩cio 6431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-ss 3917 df-uni 4858 df-iota 6433 |
| This theorem is referenced by: csbiota 6470 dffv3 6813 fveq1 6816 fveq2 6817 fvres 6836 csbfv12 6862 opabiota 6899 fvco2 6914 fvopab5 6957 riotaeqdv 7299 riotabidv 7300 riotabidva 7317 erov 8733 iunfictbso 9997 isf32lem9 10244 shftval 14973 sumeq1 15588 sumeq2w 15591 sumeq2ii 15592 sumeq2sdv 15602 zsum 15617 isumclim3 15658 isumshft 15738 prodeq1f 15805 prodeq1 15806 prodeq2w 15809 prodeq2ii 15810 prodeq2sdv 15822 zprod 15836 iprodclim3 15899 pcval 16748 grpidval 18561 grpidpropd 18562 gsumvalx 18576 gsumpropd 18578 gsumpropd2lem 18579 gsumress 18582 psgnfval 19405 psgnval 19412 psgndif 21532 dchrptlem1 27195 lgsdchrval 27285 nosupcbv 27634 nosupfv 27638 noinfcbv 27649 noinffv 27653 ajval 30831 adjval 31860 urpropd 33189 resv1r 33294 opprqus0g 33445 prodeq12sdv 36231 cbvsumdavw 36292 cbvproddavw 36293 cbvsumdavw2 36308 cbvproddavw2 36309 bj-finsumval0 37298 uncov 37620 afv2eq12d 47225 funressndmafv2rn 47233 afv2res 47249 dfafv23 47263 afv2co2 47267 |
| Copyright terms: Public domain | W3C validator |