| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 6479 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ℩cio 6464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3933 df-uni 4874 df-iota 6466 |
| This theorem is referenced by: csbiota 6506 dffv3 6856 fveq1 6859 fveq2 6860 fvres 6879 csbfv12 6908 opabiota 6945 fvco2 6960 fvopab5 7003 riotaeqdv 7347 riotabidv 7348 riotabidva 7365 erov 8789 iunfictbso 10073 isf32lem9 10320 shftval 15046 sumeq1 15661 sumeq2w 15664 sumeq2ii 15665 sumeq2sdv 15675 zsum 15690 isumclim3 15731 isumshft 15811 prodeq1f 15878 prodeq1 15879 prodeq2w 15882 prodeq2ii 15883 prodeq2sdv 15895 zprod 15909 iprodclim3 15972 pcval 16821 grpidval 18594 grpidpropd 18595 gsumvalx 18609 gsumpropd 18611 gsumpropd2lem 18612 gsumress 18615 psgnfval 19436 psgnval 19443 psgndif 21517 dchrptlem1 27181 lgsdchrval 27271 nosupcbv 27620 nosupfv 27624 noinfcbv 27635 noinffv 27639 ajval 30796 adjval 31825 urpropd 33189 resv1r 33317 opprqus0g 33467 prodeq12sdv 36201 cbvsumdavw 36262 cbvproddavw 36263 cbvsumdavw2 36278 cbvproddavw2 36279 bj-finsumval0 37268 uncov 37590 afv2eq12d 47206 funressndmafv2rn 47214 afv2res 47230 dfafv23 47244 afv2co2 47248 |
| Copyright terms: Public domain | W3C validator |