![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1925 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | iotabi 6529 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ℩cio 6514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-uni 4913 df-iota 6516 |
This theorem is referenced by: csbiota 6556 dffv3 6903 fveq1 6906 fveq2 6907 fvres 6926 csbfv12 6955 opabiota 6991 fvco2 7006 fvopab5 7049 riotaeqdv 7389 riotabidv 7390 riotabidva 7407 erov 8853 iunfictbso 10152 isf32lem9 10399 shftval 15110 sumeq1 15722 sumeq2w 15725 sumeq2ii 15726 sumeq2sdv 15736 zsum 15751 isumclim3 15792 isumshft 15872 prodeq1f 15939 prodeq1 15940 prodeq2w 15943 prodeq2ii 15944 prodeq2sdv 15956 zprod 15970 iprodclim3 16033 pcval 16878 grpidval 18687 grpidpropd 18688 gsumvalx 18702 gsumpropd 18704 gsumpropd2lem 18705 gsumress 18708 psgnfval 19533 psgnval 19540 psgndif 21638 dchrptlem1 27323 lgsdchrval 27413 nosupcbv 27762 nosupfv 27766 noinfcbv 27777 noinffv 27781 ajval 30890 adjval 31919 urpropd 33222 resv1r 33348 opprqus0g 33498 prodeq12sdv 36201 cbvsumdavw 36262 cbvproddavw 36263 cbvsumdavw2 36278 cbvproddavw2 36279 bj-finsumval0 37268 uncov 37588 afv2eq12d 47165 funressndmafv2rn 47173 afv2res 47189 dfafv23 47203 afv2co2 47207 |
Copyright terms: Public domain | W3C validator |