| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 6455 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-uni 4862 df-iota 6442 |
| This theorem is referenced by: csbiota 6479 dffv3 6822 fveq1 6825 fveq2 6826 fvres 6845 csbfv12 6872 opabiota 6909 fvco2 6924 fvopab5 6967 riotaeqdv 7311 riotabidv 7312 riotabidva 7329 erov 8748 iunfictbso 10027 isf32lem9 10274 shftval 14999 sumeq1 15614 sumeq2w 15617 sumeq2ii 15618 sumeq2sdv 15628 zsum 15643 isumclim3 15684 isumshft 15764 prodeq1f 15831 prodeq1 15832 prodeq2w 15835 prodeq2ii 15836 prodeq2sdv 15848 zprod 15862 iprodclim3 15925 pcval 16774 grpidval 18553 grpidpropd 18554 gsumvalx 18568 gsumpropd 18570 gsumpropd2lem 18571 gsumress 18574 psgnfval 19397 psgnval 19404 psgndif 21527 dchrptlem1 27191 lgsdchrval 27281 nosupcbv 27630 nosupfv 27634 noinfcbv 27645 noinffv 27649 ajval 30823 adjval 31852 urpropd 33182 resv1r 33287 opprqus0g 33437 prodeq12sdv 36191 cbvsumdavw 36252 cbvproddavw 36253 cbvsumdavw2 36268 cbvproddavw2 36269 bj-finsumval0 37258 uncov 37580 afv2eq12d 47200 funressndmafv2rn 47208 afv2res 47224 dfafv23 47238 afv2co2 47242 |
| Copyright terms: Public domain | W3C validator |