Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1929 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | iotabi 6308 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1537 = wceq 1539 ℩cio 6293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-in 3866 df-ss 3876 df-uni 4800 df-iota 6295 |
This theorem is referenced by: csbiota 6329 dffv3 6655 fveq1 6658 fveq2 6659 fvres 6678 csbfv12 6702 opabiota 6736 fvco2 6750 fvopab5 6792 riotaeqdv 7110 riotabidv 7111 riotabidva 7128 erov 8405 iunfictbso 9567 isf32lem9 9814 shftval 14474 sumeq1 15086 sumeq2w 15090 sumeq2ii 15091 zsum 15116 isumclim3 15155 isumshft 15235 prodeq1f 15303 prodeq2w 15307 prodeq2ii 15308 zprod 15332 iprodclim3 15395 pcval 16229 grpidval 17930 grpidpropd 17931 gsumvalx 17945 gsumpropd 17947 gsumpropd2lem 17948 gsumress 17951 psgnfval 18688 psgnval 18695 psgndif 20360 dchrptlem1 25940 lgsdchrval 26030 ajval 28736 adjval 29765 resv1r 31055 nosupcbv 33463 nosupfv 33467 noinfcbv 33478 noinffv 33482 bj-finsumval0 34973 uncov 35311 afv2eq12d 44132 funressndmafv2rn 44140 afv2res 44156 dfafv23 44170 afv2co2 44174 |
Copyright terms: Public domain | W3C validator |