| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1928 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 6456 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ℩cio 6441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4859 df-iota 6443 |
| This theorem is referenced by: csbiota 6480 dffv3 6824 fveq1 6827 fveq2 6828 fvres 6847 csbfv12 6873 opabiota 6910 fvco2 6925 fvopab5 6968 riotaeqdv 7310 riotabidv 7311 riotabidva 7328 erov 8744 iunfictbso 10011 isf32lem9 10258 shftval 14987 sumeq1 15602 sumeq2w 15605 sumeq2ii 15606 sumeq2sdv 15616 zsum 15631 isumclim3 15672 isumshft 15752 prodeq1f 15819 prodeq1 15820 prodeq2w 15823 prodeq2ii 15824 prodeq2sdv 15836 zprod 15850 iprodclim3 15913 pcval 16762 grpidval 18575 grpidpropd 18576 gsumvalx 18590 gsumpropd 18592 gsumpropd2lem 18593 gsumress 18596 psgnfval 19418 psgnval 19425 psgndif 21545 dchrptlem1 27208 lgsdchrval 27298 nosupcbv 27647 nosupfv 27651 noinfcbv 27662 noinffv 27666 ajval 30848 adjval 31877 urpropd 33206 resv1r 33311 opprqus0g 33462 prodeq12sdv 36269 cbvsumdavw 36330 cbvproddavw 36331 cbvsumdavw2 36346 cbvproddavw2 36347 bj-finsumval0 37336 uncov 37647 dfpre2 38496 dfpre3 38497 dfpre4 38499 afv2eq12d 47320 funressndmafv2rn 47328 afv2res 47344 dfafv23 47358 afv2co2 47362 |
| Copyright terms: Public domain | W3C validator |