| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 6477 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ℩cio 6462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-iota 6464 |
| This theorem is referenced by: csbiota 6504 dffv3 6854 fveq1 6857 fveq2 6858 fvres 6877 csbfv12 6906 opabiota 6943 fvco2 6958 fvopab5 7001 riotaeqdv 7345 riotabidv 7346 riotabidva 7363 erov 8787 iunfictbso 10067 isf32lem9 10314 shftval 15040 sumeq1 15655 sumeq2w 15658 sumeq2ii 15659 sumeq2sdv 15669 zsum 15684 isumclim3 15725 isumshft 15805 prodeq1f 15872 prodeq1 15873 prodeq2w 15876 prodeq2ii 15877 prodeq2sdv 15889 zprod 15903 iprodclim3 15966 pcval 16815 grpidval 18588 grpidpropd 18589 gsumvalx 18603 gsumpropd 18605 gsumpropd2lem 18606 gsumress 18609 psgnfval 19430 psgnval 19437 psgndif 21511 dchrptlem1 27175 lgsdchrval 27265 nosupcbv 27614 nosupfv 27618 noinfcbv 27629 noinffv 27633 ajval 30790 adjval 31819 urpropd 33183 resv1r 33311 opprqus0g 33461 prodeq12sdv 36206 cbvsumdavw 36267 cbvproddavw 36268 cbvsumdavw2 36283 cbvproddavw2 36284 bj-finsumval0 37273 uncov 37595 afv2eq12d 47216 funressndmafv2rn 47224 afv2res 47240 dfafv23 47254 afv2co2 47258 |
| Copyright terms: Public domain | W3C validator |