Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | iotabi 6405 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ℩cio 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-iota 6391 |
This theorem is referenced by: csbiota 6426 dffv3 6770 fveq1 6773 fveq2 6774 fvres 6793 csbfv12 6817 opabiota 6851 fvco2 6865 fvopab5 6907 riotaeqdv 7233 riotabidv 7234 riotabidva 7252 erov 8603 iunfictbso 9870 isf32lem9 10117 shftval 14785 sumeq1 15400 sumeq2w 15404 sumeq2ii 15405 zsum 15430 isumclim3 15471 isumshft 15551 prodeq1f 15618 prodeq2w 15622 prodeq2ii 15623 zprod 15647 iprodclim3 15710 pcval 16545 grpidval 18345 grpidpropd 18346 gsumvalx 18360 gsumpropd 18362 gsumpropd2lem 18363 gsumress 18366 psgnfval 19108 psgnval 19115 psgndif 20807 dchrptlem1 26412 lgsdchrval 26502 ajval 29223 adjval 30252 resv1r 31541 nosupcbv 33905 nosupfv 33909 noinfcbv 33920 noinffv 33924 bj-finsumval0 35456 uncov 35758 afv2eq12d 44707 funressndmafv2rn 44715 afv2res 44731 dfafv23 44745 afv2co2 44749 |
Copyright terms: Public domain | W3C validator |