![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | iotabi 6539 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6525 |
This theorem is referenced by: csbiota 6566 dffv3 6916 fveq1 6919 fveq2 6920 fvres 6939 csbfv12 6968 opabiota 7004 fvco2 7019 fvopab5 7062 riotaeqdv 7405 riotabidv 7406 riotabidva 7424 erov 8872 iunfictbso 10183 isf32lem9 10430 shftval 15123 sumeq1 15737 sumeq2w 15740 sumeq2ii 15741 sumeq2sdv 15751 zsum 15766 isumclim3 15807 isumshft 15887 prodeq1f 15954 prodeq1 15955 prodeq2w 15958 prodeq2ii 15959 prodeq2sdv 15971 zprod 15985 iprodclim3 16048 pcval 16891 grpidval 18699 grpidpropd 18700 gsumvalx 18714 gsumpropd 18716 gsumpropd2lem 18717 gsumress 18720 psgnfval 19542 psgnval 19549 psgndif 21643 dchrptlem1 27326 lgsdchrval 27416 nosupcbv 27765 nosupfv 27769 noinfcbv 27780 noinffv 27784 ajval 30893 adjval 31922 urpropd 33212 resv1r 33333 opprqus0g 33483 prodeq12sdv 36184 cbvsumdavw 36245 cbvproddavw 36246 cbvsumdavw2 36261 cbvproddavw2 36262 bj-finsumval0 37251 uncov 37561 afv2eq12d 47130 funressndmafv2rn 47138 afv2res 47154 dfafv23 47168 afv2co2 47172 |
Copyright terms: Public domain | W3C validator |