Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotabidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | iotabi 6390 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-iota 6376 |
This theorem is referenced by: csbiota 6411 dffv3 6752 fveq1 6755 fveq2 6756 fvres 6775 csbfv12 6799 opabiota 6833 fvco2 6847 fvopab5 6889 riotaeqdv 7213 riotabidv 7214 riotabidva 7232 erov 8561 iunfictbso 9801 isf32lem9 10048 shftval 14713 sumeq1 15328 sumeq2w 15332 sumeq2ii 15333 zsum 15358 isumclim3 15399 isumshft 15479 prodeq1f 15546 prodeq2w 15550 prodeq2ii 15551 zprod 15575 iprodclim3 15638 pcval 16473 grpidval 18260 grpidpropd 18261 gsumvalx 18275 gsumpropd 18277 gsumpropd2lem 18278 gsumress 18281 psgnfval 19023 psgnval 19030 psgndif 20719 dchrptlem1 26317 lgsdchrval 26407 ajval 29124 adjval 30153 resv1r 31443 nosupcbv 33832 nosupfv 33836 noinfcbv 33847 noinffv 33851 bj-finsumval0 35383 uncov 35685 afv2eq12d 44594 funressndmafv2rn 44602 afv2res 44618 dfafv23 44632 afv2co2 44636 |
Copyright terms: Public domain | W3C validator |