Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphssphl | Structured version Visualization version GIF version |
Description: A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008.) (Revised by AV, 25-Sep-2022.) |
Ref | Expression |
---|---|
cphssphl.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
cphssphl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
cphssphl | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban) → 𝑋 ∈ ℂHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban) → 𝑋 ∈ Ban) | |
2 | cphssphl.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
3 | cphssphl.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | cphsscph 23951 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂPreHil) |
5 | 4 | 3adant3 1129 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban) → 𝑋 ∈ ℂPreHil) |
6 | ishl 24062 | . 2 ⊢ (𝑋 ∈ ℂHil ↔ (𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil)) | |
7 | 1, 5, 6 | sylanbrc 586 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban) → 𝑋 ∈ ℂHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 ↾s cress 16542 LSubSpclss 19771 ℂPreHilccph 23867 Bancbn 24033 ℂHilchl 24034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ico 12785 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ds 16645 df-rest 16754 df-topn 16755 df-0g 16773 df-topgen 16775 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-subg 18343 df-ghm 18423 df-mgp 19308 df-ur 19320 df-ring 19367 df-subrg 19601 df-lmod 19704 df-lss 19772 df-lsp 19812 df-lmhm 19862 df-lvec 19943 df-sra 20012 df-rgmod 20013 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-phl 20391 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-xms 23022 df-ms 23023 df-nm 23284 df-ngp 23285 df-nlm 23288 df-cph 23869 df-hl 24037 |
This theorem is referenced by: csschl 24076 |
Copyright terms: Public domain | W3C validator |