| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmbn | Structured version Visualization version GIF version | ||
| Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| rlmbn | ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ CMetSp) | |
| 2 | cmsms 25255 | . . . . 5 ⊢ (𝑅 ∈ CMetSp → 𝑅 ∈ MetSp) | |
| 3 | mstps 24350 | . . . . 5 ⊢ (𝑅 ∈ MetSp → 𝑅 ∈ TopSp) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ TopSp) |
| 5 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
| 7 | 5, 6 | tpsuni 22830 | . . . 4 ⊢ (𝑅 ∈ TopSp → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
| 8 | 4, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
| 9 | 6 | tpstop 22831 | . . . 4 ⊢ (𝑅 ∈ TopSp → (TopOpen‘𝑅) ∈ Top) |
| 10 | eqid 2730 | . . . . 5 ⊢ ∪ (TopOpen‘𝑅) = ∪ (TopOpen‘𝑅) | |
| 11 | 10 | topcld 22929 | . . . 4 ⊢ ((TopOpen‘𝑅) ∈ Top → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 12 | 4, 9, 11 | 3syl 18 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 13 | 8, 12 | eqeltrd 2829 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 14 | 5 | ressid 17221 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 15 | 14 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 16 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ DivRing) | |
| 17 | 15, 16 | eqeltrd 2829 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) ∈ DivRing) |
| 18 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ NrmRing) | |
| 19 | nrgring 24558 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 20 | 19 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ Ring) |
| 21 | 5 | subrgid 20489 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 23 | rlmval 21105 | . . . 4 ⊢ (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅)) | |
| 24 | 23, 6 | srabn 25267 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ CMetSp ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
| 25 | 18, 1, 22, 24 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
| 26 | 13, 17, 25 | mpbir2and 713 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cuni 4874 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 TopOpenctopn 17391 Ringcrg 20149 SubRingcsubrg 20485 DivRingcdr 20645 ringLModcrglmod 21086 Topctop 22787 TopSpctps 22826 Clsdccld 22910 MetSpcms 24213 NrmRingcnrg 24474 CMetSpccms 25239 Bancbn 25240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ico 13319 df-icc 13320 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ds 17249 df-rest 17392 df-topn 17393 df-0g 17411 df-topgen 17413 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-subrng 20462 df-subrg 20486 df-abv 20725 df-lmod 20775 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-haus 23209 df-fil 23740 df-flim 23833 df-xms 24215 df-ms 24216 df-nm 24477 df-ngp 24478 df-nrg 24480 df-nlm 24481 df-nvc 24482 df-cfil 25162 df-cmet 25164 df-cms 25242 df-bn 25243 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |