| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmbn | Structured version Visualization version GIF version | ||
| Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| rlmbn | ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ CMetSp) | |
| 2 | cmsms 25295 | . . . . 5 ⊢ (𝑅 ∈ CMetSp → 𝑅 ∈ MetSp) | |
| 3 | mstps 24390 | . . . . 5 ⊢ (𝑅 ∈ MetSp → 𝑅 ∈ TopSp) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ TopSp) |
| 5 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2733 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
| 7 | 5, 6 | tpsuni 22871 | . . . 4 ⊢ (𝑅 ∈ TopSp → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
| 8 | 4, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
| 9 | 6 | tpstop 22872 | . . . 4 ⊢ (𝑅 ∈ TopSp → (TopOpen‘𝑅) ∈ Top) |
| 10 | eqid 2733 | . . . . 5 ⊢ ∪ (TopOpen‘𝑅) = ∪ (TopOpen‘𝑅) | |
| 11 | 10 | topcld 22970 | . . . 4 ⊢ ((TopOpen‘𝑅) ∈ Top → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 12 | 4, 9, 11 | 3syl 18 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 13 | 8, 12 | eqeltrd 2833 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 14 | 5 | ressid 17162 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 15 | 14 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 16 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ DivRing) | |
| 17 | 15, 16 | eqeltrd 2833 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) ∈ DivRing) |
| 18 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ NrmRing) | |
| 19 | nrgring 24598 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 20 | 19 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ Ring) |
| 21 | 5 | subrgid 20497 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 23 | rlmval 21134 | . . . 4 ⊢ (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅)) | |
| 24 | 23, 6 | srabn 25307 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ CMetSp ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
| 25 | 18, 1, 22, 24 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
| 26 | 13, 17, 25 | mpbir2and 713 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cuni 4860 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 ↾s cress 17148 TopOpenctopn 17332 Ringcrg 20159 SubRingcsubrg 20493 DivRingcdr 20653 ringLModcrglmod 21115 Topctop 22828 TopSpctps 22867 Clsdccld 22951 MetSpcms 24253 NrmRingcnrg 24514 CMetSpccms 25279 Bancbn 25280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9306 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ico 13258 df-icc 13259 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ds 17190 df-rest 17333 df-topn 17334 df-0g 17352 df-topgen 17354 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-subrng 20470 df-subrg 20494 df-abv 20733 df-lmod 20804 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-haus 23250 df-fil 23781 df-flim 23874 df-xms 24255 df-ms 24256 df-nm 24517 df-ngp 24518 df-nrg 24520 df-nlm 24521 df-nvc 24522 df-cfil 25202 df-cmet 25204 df-cms 25282 df-bn 25283 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |