![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlmbn | Structured version Visualization version GIF version |
Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
rlmbn | ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1129 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ CMetSp) | |
2 | cmsms 23554 | . . . . 5 ⊢ (𝑅 ∈ CMetSp → 𝑅 ∈ MetSp) | |
3 | mstps 22668 | . . . . 5 ⊢ (𝑅 ∈ MetSp → 𝑅 ∈ TopSp) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ TopSp) |
5 | eqid 2778 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | eqid 2778 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
7 | 5, 6 | tpsuni 21148 | . . . 4 ⊢ (𝑅 ∈ TopSp → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
8 | 4, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
9 | 6 | tpstop 21149 | . . . 4 ⊢ (𝑅 ∈ TopSp → (TopOpen‘𝑅) ∈ Top) |
10 | eqid 2778 | . . . . 5 ⊢ ∪ (TopOpen‘𝑅) = ∪ (TopOpen‘𝑅) | |
11 | 10 | topcld 21247 | . . . 4 ⊢ ((TopOpen‘𝑅) ∈ Top → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
12 | 4, 9, 11 | 3syl 18 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
13 | 8, 12 | eqeltrd 2859 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
14 | 5 | ressid 16331 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
15 | 14 | 3ad2ant1 1124 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
16 | simp2 1128 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ DivRing) | |
17 | 15, 16 | eqeltrd 2859 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) ∈ DivRing) |
18 | simp1 1127 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ NrmRing) | |
19 | nrgring 22875 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
20 | 19 | 3ad2ant1 1124 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ Ring) |
21 | 5 | subrgid 19174 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
23 | rlmval 19588 | . . . 4 ⊢ (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅)) | |
24 | 23, 6 | srabn 23566 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ CMetSp ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
25 | 18, 1, 22, 24 | syl3anc 1439 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
26 | 13, 17, 25 | mpbir2and 703 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∪ cuni 4671 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 ↾s cress 16256 TopOpenctopn 16468 Ringcrg 18934 DivRingcdr 19139 SubRingcsubrg 19168 ringLModcrglmod 19566 Topctop 21105 TopSpctps 21144 Clsdccld 21228 MetSpcms 22531 NrmRingcnrg 22792 CMetSpccms 23538 Bancbn 23539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fi 8605 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ico 12493 df-icc 12494 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ds 16360 df-rest 16469 df-topn 16470 df-0g 16488 df-topgen 16490 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-mgp 18877 df-ur 18889 df-ring 18936 df-subrg 19170 df-abv 19209 df-lmod 19257 df-lvec 19498 df-sra 19569 df-rgmod 19570 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-fbas 20139 df-fg 20140 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-nei 21310 df-haus 21527 df-fil 22058 df-flim 22151 df-xms 22533 df-ms 22534 df-nm 22795 df-ngp 22796 df-nrg 22798 df-nlm 22799 df-nvc 22800 df-cfil 23461 df-cmet 23463 df-cms 23541 df-bn 23542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |