| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmbn | Structured version Visualization version GIF version | ||
| Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| rlmbn | ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ CMetSp) | |
| 2 | cmsms 25248 | . . . . 5 ⊢ (𝑅 ∈ CMetSp → 𝑅 ∈ MetSp) | |
| 3 | mstps 24343 | . . . . 5 ⊢ (𝑅 ∈ MetSp → 𝑅 ∈ TopSp) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ TopSp) |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
| 7 | 5, 6 | tpsuni 22823 | . . . 4 ⊢ (𝑅 ∈ TopSp → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
| 8 | 4, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
| 9 | 6 | tpstop 22824 | . . . 4 ⊢ (𝑅 ∈ TopSp → (TopOpen‘𝑅) ∈ Top) |
| 10 | eqid 2729 | . . . . 5 ⊢ ∪ (TopOpen‘𝑅) = ∪ (TopOpen‘𝑅) | |
| 11 | 10 | topcld 22922 | . . . 4 ⊢ ((TopOpen‘𝑅) ∈ Top → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 12 | 4, 9, 11 | 3syl 18 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 13 | 8, 12 | eqeltrd 2828 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
| 14 | 5 | ressid 17214 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 15 | 14 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 16 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ DivRing) | |
| 17 | 15, 16 | eqeltrd 2828 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) ∈ DivRing) |
| 18 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ NrmRing) | |
| 19 | nrgring 24551 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 20 | 19 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ Ring) |
| 21 | 5 | subrgid 20482 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 23 | rlmval 21098 | . . . 4 ⊢ (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅)) | |
| 24 | 23, 6 | srabn 25260 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ CMetSp ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
| 25 | 18, 1, 22, 24 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
| 26 | 13, 17, 25 | mpbir2and 713 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 TopOpenctopn 17384 Ringcrg 20142 SubRingcsubrg 20478 DivRingcdr 20638 ringLModcrglmod 21079 Topctop 22780 TopSpctps 22819 Clsdccld 22903 MetSpcms 24206 NrmRingcnrg 24467 CMetSpccms 25232 Bancbn 25233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ds 17242 df-rest 17385 df-topn 17386 df-0g 17404 df-topgen 17406 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 df-abv 20718 df-lmod 20768 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-haus 23202 df-fil 23733 df-flim 23826 df-xms 24208 df-ms 24209 df-nm 24470 df-ngp 24471 df-nrg 24473 df-nlm 24474 df-nvc 24475 df-cfil 25155 df-cmet 25157 df-cms 25235 df-bn 25236 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |