MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmbn Structured version   Visualization version   GIF version

Theorem rlmbn 25308
Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
rlmbn ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban)

Proof of Theorem rlmbn
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ CMetSp)
2 cmsms 25295 . . . . 5 (𝑅 ∈ CMetSp → 𝑅 ∈ MetSp)
3 mstps 24390 . . . . 5 (𝑅 ∈ MetSp → 𝑅 ∈ TopSp)
41, 2, 33syl 18 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ TopSp)
5 eqid 2733 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2733 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
75, 6tpsuni 22871 . . . 4 (𝑅 ∈ TopSp → (Base‘𝑅) = (TopOpen‘𝑅))
84, 7syl 17 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) = (TopOpen‘𝑅))
96tpstop 22872 . . . 4 (𝑅 ∈ TopSp → (TopOpen‘𝑅) ∈ Top)
10 eqid 2733 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
1110topcld 22970 . . . 4 ((TopOpen‘𝑅) ∈ Top → (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)))
124, 9, 113syl 18 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)))
138, 12eqeltrd 2833 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)))
145ressid 17162 . . . 4 (𝑅 ∈ NrmRing → (𝑅s (Base‘𝑅)) = 𝑅)
15143ad2ant1 1133 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅s (Base‘𝑅)) = 𝑅)
16 simp2 1137 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ DivRing)
1715, 16eqeltrd 2833 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅s (Base‘𝑅)) ∈ DivRing)
18 simp1 1136 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ NrmRing)
19 nrgring 24598 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
20193ad2ant1 1133 . . . 4 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ Ring)
215subrgid 20497 . . . 4 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
2220, 21syl 17 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (SubRing‘𝑅))
23 rlmval 21134 . . . 4 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
2423, 6srabn 25307 . . 3 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ CMetSp ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅s (Base‘𝑅)) ∈ DivRing)))
2518, 1, 22, 24syl3anc 1373 . 2 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅s (Base‘𝑅)) ∈ DivRing)))
2613, 17, 25mpbir2and 713 1 ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   cuni 4860  cfv 6489  (class class class)co 7355  Basecbs 17127  s cress 17148  TopOpenctopn 17332  Ringcrg 20159  SubRingcsubrg 20493  DivRingcdr 20653  ringLModcrglmod 21115  Topctop 22828  TopSpctps 22867  Clsdccld 22951  MetSpcms 24253  NrmRingcnrg 24514  CMetSpccms 25279  Bancbn 25280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9306  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ico 13258  df-icc 13259  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ds 17190  df-rest 17333  df-topn 17334  df-0g 17352  df-topgen 17354  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-subrng 20470  df-subrg 20494  df-abv 20733  df-lmod 20804  df-lvec 21046  df-sra 21116  df-rgmod 21117  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-haus 23250  df-fil 23781  df-flim 23874  df-xms 24255  df-ms 24256  df-nm 24517  df-ngp 24518  df-nrg 24520  df-nlm 24521  df-nvc 24522  df-cfil 25202  df-cmet 25204  df-cms 25282  df-bn 25283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator