![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlmbn | Structured version Visualization version GIF version |
Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
rlmbn | β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β (ringLModβπ ) β Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . . . . 5 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β π β CMetSp) | |
2 | cmsms 25098 | . . . . 5 β’ (π β CMetSp β π β MetSp) | |
3 | mstps 24183 | . . . . 5 β’ (π β MetSp β π β TopSp) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β π β TopSp) |
5 | eqid 2730 | . . . . 5 β’ (Baseβπ ) = (Baseβπ ) | |
6 | eqid 2730 | . . . . 5 β’ (TopOpenβπ ) = (TopOpenβπ ) | |
7 | 5, 6 | tpsuni 22660 | . . . 4 β’ (π β TopSp β (Baseβπ ) = βͺ (TopOpenβπ )) |
8 | 4, 7 | syl 17 | . . 3 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β (Baseβπ ) = βͺ (TopOpenβπ )) |
9 | 6 | tpstop 22661 | . . . 4 β’ (π β TopSp β (TopOpenβπ ) β Top) |
10 | eqid 2730 | . . . . 5 β’ βͺ (TopOpenβπ ) = βͺ (TopOpenβπ ) | |
11 | 10 | topcld 22761 | . . . 4 β’ ((TopOpenβπ ) β Top β βͺ (TopOpenβπ ) β (Clsdβ(TopOpenβπ ))) |
12 | 4, 9, 11 | 3syl 18 | . . 3 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β βͺ (TopOpenβπ ) β (Clsdβ(TopOpenβπ ))) |
13 | 8, 12 | eqeltrd 2831 | . 2 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β (Baseβπ ) β (Clsdβ(TopOpenβπ ))) |
14 | 5 | ressid 17195 | . . . 4 β’ (π β NrmRing β (π βΎs (Baseβπ )) = π ) |
15 | 14 | 3ad2ant1 1131 | . . 3 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β (π βΎs (Baseβπ )) = π ) |
16 | simp2 1135 | . . 3 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β π β DivRing) | |
17 | 15, 16 | eqeltrd 2831 | . 2 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β (π βΎs (Baseβπ )) β DivRing) |
18 | simp1 1134 | . . 3 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β π β NrmRing) | |
19 | nrgring 24402 | . . . . 5 β’ (π β NrmRing β π β Ring) | |
20 | 19 | 3ad2ant1 1131 | . . . 4 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β π β Ring) |
21 | 5 | subrgid 20465 | . . . 4 β’ (π β Ring β (Baseβπ ) β (SubRingβπ )) |
22 | 20, 21 | syl 17 | . . 3 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β (Baseβπ ) β (SubRingβπ )) |
23 | rlmval 20960 | . . . 4 β’ (ringLModβπ ) = ((subringAlg βπ )β(Baseβπ )) | |
24 | 23, 6 | srabn 25110 | . . 3 β’ ((π β NrmRing β§ π β CMetSp β§ (Baseβπ ) β (SubRingβπ )) β ((ringLModβπ ) β Ban β ((Baseβπ ) β (Clsdβ(TopOpenβπ )) β§ (π βΎs (Baseβπ )) β DivRing))) |
25 | 18, 1, 22, 24 | syl3anc 1369 | . 2 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β ((ringLModβπ ) β Ban β ((Baseβπ ) β (Clsdβ(TopOpenβπ )) β§ (π βΎs (Baseβπ )) β DivRing))) |
26 | 13, 17, 25 | mpbir2and 709 | 1 β’ ((π β NrmRing β§ π β DivRing β§ π β CMetSp) β (ringLModβπ ) β Ban) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βͺ cuni 4909 βcfv 6544 (class class class)co 7413 Basecbs 17150 βΎs cress 17179 TopOpenctopn 17373 Ringcrg 20129 SubRingcsubrg 20459 DivRingcdr 20502 ringLModcrglmod 20929 Topctop 22617 TopSpctps 22656 Clsdccld 22742 MetSpcms 24046 NrmRingcnrg 24310 CMetSpccms 25082 Bancbn 25083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fi 9410 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ico 13336 df-icc 13337 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ds 17225 df-rest 17374 df-topn 17375 df-0g 17393 df-topgen 17395 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-minusg 18861 df-sbg 18862 df-subg 19041 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-subrng 20436 df-subrg 20461 df-abv 20570 df-lmod 20618 df-lvec 20860 df-sra 20932 df-rgmod 20933 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-fbas 21143 df-fg 21144 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-cld 22745 df-ntr 22746 df-cls 22747 df-nei 22824 df-haus 23041 df-fil 23572 df-flim 23665 df-xms 24048 df-ms 24049 df-nm 24313 df-ngp 24314 df-nrg 24316 df-nlm 24317 df-nvc 24318 df-cfil 25005 df-cmet 25007 df-cms 25085 df-bn 25086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |