![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlmbn | Structured version Visualization version GIF version |
Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
rlmbn | ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . . . 5 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ CMetSp) | |
2 | cmsms 24618 | . . . . 5 ⊢ (𝑅 ∈ CMetSp → 𝑅 ∈ MetSp) | |
3 | mstps 23714 | . . . . 5 ⊢ (𝑅 ∈ MetSp → 𝑅 ∈ TopSp) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ TopSp) |
5 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | eqid 2736 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
7 | 5, 6 | tpsuni 22191 | . . . 4 ⊢ (𝑅 ∈ TopSp → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
8 | 4, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) = ∪ (TopOpen‘𝑅)) |
9 | 6 | tpstop 22192 | . . . 4 ⊢ (𝑅 ∈ TopSp → (TopOpen‘𝑅) ∈ Top) |
10 | eqid 2736 | . . . . 5 ⊢ ∪ (TopOpen‘𝑅) = ∪ (TopOpen‘𝑅) | |
11 | 10 | topcld 22292 | . . . 4 ⊢ ((TopOpen‘𝑅) ∈ Top → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
12 | 4, 9, 11 | 3syl 18 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ∪ (TopOpen‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
13 | 8, 12 | eqeltrd 2837 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅))) |
14 | 5 | ressid 17051 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
15 | 14 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
16 | simp2 1136 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ DivRing) | |
17 | 15, 16 | eqeltrd 2837 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (𝑅 ↾s (Base‘𝑅)) ∈ DivRing) |
18 | simp1 1135 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ NrmRing) | |
19 | nrgring 23933 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
20 | 19 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → 𝑅 ∈ Ring) |
21 | 5 | subrgid 20131 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
23 | rlmval 20567 | . . . 4 ⊢ (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅)) | |
24 | 23, 6 | srabn 24630 | . . 3 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ CMetSp ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
25 | 18, 1, 22, 24 | syl3anc 1370 | . 2 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → ((ringLMod‘𝑅) ∈ Ban ↔ ((Base‘𝑅) ∈ (Clsd‘(TopOpen‘𝑅)) ∧ (𝑅 ↾s (Base‘𝑅)) ∈ DivRing))) |
26 | 13, 17, 25 | mpbir2and 710 | 1 ⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∪ cuni 4852 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 ↾s cress 17038 TopOpenctopn 17229 Ringcrg 19878 DivRingcdr 20093 SubRingcsubrg 20125 ringLModcrglmod 20537 Topctop 22148 TopSpctps 22187 Clsdccld 22273 MetSpcms 23577 NrmRingcnrg 23841 CMetSpccms 24602 Bancbn 24603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fi 9268 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ico 13186 df-icc 13187 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ds 17081 df-rest 17230 df-topn 17231 df-0g 17249 df-topgen 17251 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-mgp 19816 df-ur 19833 df-ring 19880 df-subrg 20127 df-abv 20183 df-lmod 20231 df-lvec 20471 df-sra 20540 df-rgmod 20541 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-haus 22572 df-fil 23103 df-flim 23196 df-xms 23579 df-ms 23580 df-nm 23844 df-ngp 23845 df-nrg 23847 df-nlm 23848 df-nvc 23849 df-cfil 24525 df-cmet 24527 df-cms 24605 df-bn 24606 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |