Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ishl2 | Structured version Visualization version GIF version |
Description: A Hilbert space is a complete subcomplex pre-Hilbert space over ℝ or ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlress.f | ⊢ 𝐹 = (Scalar‘𝑊) |
hlress.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
ishl2 | ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl 24431 | . 2 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | |
2 | df-3an 1087 | . . 3 ⊢ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil)) | |
3 | 3ancomb 1097 | . . 3 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil)) | |
4 | cphnvc 24245 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) | |
5 | hlress.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | 5 | isbn 24407 | . . . . . . . 8 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
7 | 3anass 1093 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) | |
8 | 6, 7 | bitri 274 | . . . . . . 7 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
9 | 8 | baib 535 | . . . . . 6 ⊢ (𝑊 ∈ NrmVec → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
10 | 4, 9 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
11 | hlress.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝐹) | |
12 | 5, 11 | cphsca 24248 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
13 | 12 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ (ℂfld ↾s 𝐾) ∈ CMetSp)) |
14 | 5, 11 | cphsubrg 24249 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
15 | cphlvec 24244 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
16 | 5 | lvecdrng 20282 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
17 | 15, 16 | syl 17 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing) |
18 | 12, 17 | eqeltrrd 2840 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂPreHil → (ℂfld ↾s 𝐾) ∈ DivRing) |
19 | eqid 2738 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
20 | 19 | cncdrg 24428 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing ∧ (ℂfld ↾s 𝐾) ∈ CMetSp) → 𝐾 ∈ {ℝ, ℂ}) |
21 | 20 | 3expia 1119 | . . . . . . . . 9 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing) → ((ℂfld ↾s 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ})) |
22 | 14, 18, 21 | syl2anc 583 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂPreHil → ((ℂfld ↾s 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ})) |
23 | elpri 4580 | . . . . . . . . 9 ⊢ (𝐾 ∈ {ℝ, ℂ} → (𝐾 = ℝ ∨ 𝐾 = ℂ)) | |
24 | oveq2 7263 | . . . . . . . . . . 11 ⊢ (𝐾 = ℝ → (ℂfld ↾s 𝐾) = (ℂfld ↾s ℝ)) | |
25 | eqid 2738 | . . . . . . . . . . . . 13 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
26 | 25 | recld2 23883 | . . . . . . . . . . . 12 ⊢ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) |
27 | cncms 24424 | . . . . . . . . . . . . 13 ⊢ ℂfld ∈ CMetSp | |
28 | ax-resscn 10859 | . . . . . . . . . . . . 13 ⊢ ℝ ⊆ ℂ | |
29 | eqid 2738 | . . . . . . . . . . . . . 14 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
30 | cnfldbas 20514 | . . . . . . . . . . . . . 14 ⊢ ℂ = (Base‘ℂfld) | |
31 | 29, 30, 25 | cmsss 24420 | . . . . . . . . . . . . 13 ⊢ ((ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ) → ((ℂfld ↾s ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)))) |
32 | 27, 28, 31 | mp2an 688 | . . . . . . . . . . . 12 ⊢ ((ℂfld ↾s ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld))) |
33 | 26, 32 | mpbir 230 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s ℝ) ∈ CMetSp |
34 | 24, 33 | eqeltrdi 2847 | . . . . . . . . . 10 ⊢ (𝐾 = ℝ → (ℂfld ↾s 𝐾) ∈ CMetSp) |
35 | oveq2 7263 | . . . . . . . . . . 11 ⊢ (𝐾 = ℂ → (ℂfld ↾s 𝐾) = (ℂfld ↾s ℂ)) | |
36 | 30 | ressid 16880 | . . . . . . . . . . . . 13 ⊢ (ℂfld ∈ CMetSp → (ℂfld ↾s ℂ) = ℂfld) |
37 | 27, 36 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ (ℂfld ↾s ℂ) = ℂfld |
38 | 37, 27 | eqeltri 2835 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s ℂ) ∈ CMetSp |
39 | 35, 38 | eqeltrdi 2847 | . . . . . . . . . 10 ⊢ (𝐾 = ℂ → (ℂfld ↾s 𝐾) ∈ CMetSp) |
40 | 34, 39 | jaoi 853 | . . . . . . . . 9 ⊢ ((𝐾 = ℝ ∨ 𝐾 = ℂ) → (ℂfld ↾s 𝐾) ∈ CMetSp) |
41 | 23, 40 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ {ℝ, ℂ} → (ℂfld ↾s 𝐾) ∈ CMetSp) |
42 | 22, 41 | impbid1 224 | . . . . . . 7 ⊢ (𝑊 ∈ ℂPreHil → ((ℂfld ↾s 𝐾) ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ})) |
43 | 13, 42 | bitrd 278 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ})) |
44 | 43 | anbi2d 628 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → ((𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}))) |
45 | 10, 44 | bitrd 278 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}))) |
46 | 45 | pm5.32ri 575 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil)) |
47 | 2, 3, 46 | 3bitr4ri 303 | . 2 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
48 | 1, 47 | bitri 274 | 1 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {cpr 4560 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 Basecbs 16840 ↾s cress 16867 Scalarcsca 16891 TopOpenctopn 17049 DivRingcdr 19906 SubRingcsubrg 19935 LVecclvec 20279 ℂfldccnfld 20510 Clsdccld 22075 NrmVeccnvc 23643 ℂPreHilccph 24235 CMetSpccms 24401 Bancbn 24402 ℂHilchl 24403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-mulg 18616 df-subg 18667 df-cntz 18838 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-subrg 19937 df-lvec 20280 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-phl 20743 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-flim 22998 df-fcls 23000 df-xms 23381 df-ms 23382 df-tms 23383 df-nvc 23649 df-cncf 23947 df-cph 24237 df-cfil 24324 df-cmet 24326 df-cms 24404 df-bn 24405 df-hl 24406 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |