| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishl2 | Structured version Visualization version GIF version | ||
| Description: A Hilbert space is a complete subcomplex pre-Hilbert space over ℝ or ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| hlress.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| hlress.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| ishl2 | ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishl 25262 | . 2 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | |
| 2 | df-3an 1088 | . . 3 ⊢ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil)) | |
| 3 | 3ancomb 1098 | . . 3 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil)) | |
| 4 | cphnvc 25076 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) | |
| 5 | hlress.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | 5 | isbn 25238 | . . . . . . . 8 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
| 7 | 3anass 1094 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) | |
| 8 | 6, 7 | bitri 275 | . . . . . . 7 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
| 9 | 8 | baib 535 | . . . . . 6 ⊢ (𝑊 ∈ NrmVec → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
| 10 | 4, 9 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
| 11 | hlress.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝐹) | |
| 12 | 5, 11 | cphsca 25079 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
| 13 | 12 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ (ℂfld ↾s 𝐾) ∈ CMetSp)) |
| 14 | 5, 11 | cphsubrg 25080 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
| 15 | cphlvec 25075 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
| 16 | 5 | lvecdrng 21012 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| 17 | 15, 16 | syl 17 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing) |
| 18 | 12, 17 | eqeltrrd 2829 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂPreHil → (ℂfld ↾s 𝐾) ∈ DivRing) |
| 19 | eqid 2729 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 20 | 19 | cncdrg 25259 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing ∧ (ℂfld ↾s 𝐾) ∈ CMetSp) → 𝐾 ∈ {ℝ, ℂ}) |
| 21 | 20 | 3expia 1121 | . . . . . . . . 9 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing) → ((ℂfld ↾s 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ})) |
| 22 | 14, 18, 21 | syl2anc 584 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂPreHil → ((ℂfld ↾s 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ})) |
| 23 | elpri 4613 | . . . . . . . . 9 ⊢ (𝐾 ∈ {ℝ, ℂ} → (𝐾 = ℝ ∨ 𝐾 = ℂ)) | |
| 24 | oveq2 7395 | . . . . . . . . . . 11 ⊢ (𝐾 = ℝ → (ℂfld ↾s 𝐾) = (ℂfld ↾s ℝ)) | |
| 25 | eqid 2729 | . . . . . . . . . . . . 13 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 26 | 25 | recld2 24703 | . . . . . . . . . . . 12 ⊢ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) |
| 27 | cncms 25255 | . . . . . . . . . . . . 13 ⊢ ℂfld ∈ CMetSp | |
| 28 | ax-resscn 11125 | . . . . . . . . . . . . 13 ⊢ ℝ ⊆ ℂ | |
| 29 | eqid 2729 | . . . . . . . . . . . . . 14 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
| 30 | cnfldbas 21268 | . . . . . . . . . . . . . 14 ⊢ ℂ = (Base‘ℂfld) | |
| 31 | 29, 30, 25 | cmsss 25251 | . . . . . . . . . . . . 13 ⊢ ((ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ) → ((ℂfld ↾s ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)))) |
| 32 | 27, 28, 31 | mp2an 692 | . . . . . . . . . . . 12 ⊢ ((ℂfld ↾s ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld))) |
| 33 | 26, 32 | mpbir 231 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s ℝ) ∈ CMetSp |
| 34 | 24, 33 | eqeltrdi 2836 | . . . . . . . . . 10 ⊢ (𝐾 = ℝ → (ℂfld ↾s 𝐾) ∈ CMetSp) |
| 35 | oveq2 7395 | . . . . . . . . . . 11 ⊢ (𝐾 = ℂ → (ℂfld ↾s 𝐾) = (ℂfld ↾s ℂ)) | |
| 36 | 30 | ressid 17214 | . . . . . . . . . . . . 13 ⊢ (ℂfld ∈ CMetSp → (ℂfld ↾s ℂ) = ℂfld) |
| 37 | 27, 36 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ (ℂfld ↾s ℂ) = ℂfld |
| 38 | 37, 27 | eqeltri 2824 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s ℂ) ∈ CMetSp |
| 39 | 35, 38 | eqeltrdi 2836 | . . . . . . . . . 10 ⊢ (𝐾 = ℂ → (ℂfld ↾s 𝐾) ∈ CMetSp) |
| 40 | 34, 39 | jaoi 857 | . . . . . . . . 9 ⊢ ((𝐾 = ℝ ∨ 𝐾 = ℂ) → (ℂfld ↾s 𝐾) ∈ CMetSp) |
| 41 | 23, 40 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ {ℝ, ℂ} → (ℂfld ↾s 𝐾) ∈ CMetSp) |
| 42 | 22, 41 | impbid1 225 | . . . . . . 7 ⊢ (𝑊 ∈ ℂPreHil → ((ℂfld ↾s 𝐾) ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ})) |
| 43 | 13, 42 | bitrd 279 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ})) |
| 44 | 43 | anbi2d 630 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → ((𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}))) |
| 45 | 10, 44 | bitrd 279 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}))) |
| 46 | 45 | pm5.32ri 575 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil)) |
| 47 | 2, 3, 46 | 3bitr4ri 304 | . 2 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
| 48 | 1, 47 | bitri 275 | 1 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 {cpr 4591 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 Basecbs 17179 ↾s cress 17200 Scalarcsca 17223 TopOpenctopn 17384 SubRingcsubrg 20478 DivRingcdr 20638 LVecclvec 21009 ℂfldccnfld 21264 Clsdccld 22903 NrmVeccnvc 24469 ℂPreHilccph 25066 CMetSpccms 25232 Bancbn 25233 ℂHilchl 25234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-subrng 20455 df-subrg 20479 df-drng 20640 df-lvec 21010 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-phl 21535 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cn 23114 df-cnp 23115 df-haus 23202 df-cmp 23274 df-tx 23449 df-hmeo 23642 df-fil 23733 df-flim 23826 df-fcls 23828 df-xms 24208 df-ms 24209 df-tms 24210 df-nvc 24475 df-cncf 24771 df-cph 25068 df-cfil 25155 df-cmet 25157 df-cms 25235 df-bn 25236 df-hl 25237 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |