Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishl2 Structured version   Visualization version   GIF version

Theorem ishl2 23953
 Description: A Hilbert space is a complete subcomplex pre-Hilbert space over ℝ or ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
hlress.f 𝐹 = (Scalar‘𝑊)
hlress.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ishl2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))

Proof of Theorem ishl2
StepHypRef Expression
1 ishl 23945 . 2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
2 df-3an 1086 . . 3 ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil))
3 3ancomb 1096 . . 3 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil))
4 cphnvc 23760 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)
5 hlress.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
65isbn 23921 . . . . . . . 8 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
7 3anass 1092 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
86, 7bitri 278 . . . . . . 7 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
98baib 539 . . . . . 6 (𝑊 ∈ NrmVec → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
104, 9syl 17 . . . . 5 (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
11 hlress.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
125, 11cphsca 23763 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))
1312eleq1d 2896 . . . . . . 7 (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ (ℂflds 𝐾) ∈ CMetSp))
145, 11cphsubrg 23764 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
15 cphlvec 23759 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
165lvecdrng 19853 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
1715, 16syl 17 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing)
1812, 17eqeltrrd 2913 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → (ℂflds 𝐾) ∈ DivRing)
19 eqid 2821 . . . . . . . . . . 11 (ℂflds 𝐾) = (ℂflds 𝐾)
2019cncdrg 23942 . . . . . . . . . 10 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing ∧ (ℂflds 𝐾) ∈ CMetSp) → 𝐾 ∈ {ℝ, ℂ})
21203expia 1118 . . . . . . . . 9 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing) → ((ℂflds 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ}))
2214, 18, 21syl2anc 587 . . . . . . . 8 (𝑊 ∈ ℂPreHil → ((ℂflds 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ}))
23 elpri 4562 . . . . . . . . 9 (𝐾 ∈ {ℝ, ℂ} → (𝐾 = ℝ ∨ 𝐾 = ℂ))
24 oveq2 7138 . . . . . . . . . . 11 (𝐾 = ℝ → (ℂflds 𝐾) = (ℂflds ℝ))
25 eqid 2821 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2625recld2 23398 . . . . . . . . . . . 12 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
27 cncms 23938 . . . . . . . . . . . . 13 fld ∈ CMetSp
28 ax-resscn 10571 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
29 eqid 2821 . . . . . . . . . . . . . 14 (ℂflds ℝ) = (ℂflds ℝ)
30 cnfldbas 20525 . . . . . . . . . . . . . 14 ℂ = (Base‘ℂfld)
3129, 30, 25cmsss 23934 . . . . . . . . . . . . 13 ((ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ) → ((ℂflds ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld))))
3227, 28, 31mp2an 691 . . . . . . . . . . . 12 ((ℂflds ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)))
3326, 32mpbir 234 . . . . . . . . . . 11 (ℂflds ℝ) ∈ CMetSp
3424, 33eqeltrdi 2920 . . . . . . . . . 10 (𝐾 = ℝ → (ℂflds 𝐾) ∈ CMetSp)
35 oveq2 7138 . . . . . . . . . . 11 (𝐾 = ℂ → (ℂflds 𝐾) = (ℂflds ℂ))
3630ressid 16538 . . . . . . . . . . . . 13 (ℂfld ∈ CMetSp → (ℂflds ℂ) = ℂfld)
3727, 36ax-mp 5 . . . . . . . . . . . 12 (ℂflds ℂ) = ℂfld
3837, 27eqeltri 2908 . . . . . . . . . . 11 (ℂflds ℂ) ∈ CMetSp
3935, 38eqeltrdi 2920 . . . . . . . . . 10 (𝐾 = ℂ → (ℂflds 𝐾) ∈ CMetSp)
4034, 39jaoi 854 . . . . . . . . 9 ((𝐾 = ℝ ∨ 𝐾 = ℂ) → (ℂflds 𝐾) ∈ CMetSp)
4123, 40syl 17 . . . . . . . 8 (𝐾 ∈ {ℝ, ℂ} → (ℂflds 𝐾) ∈ CMetSp)
4222, 41impbid1 228 . . . . . . 7 (𝑊 ∈ ℂPreHil → ((ℂflds 𝐾) ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ}))
4313, 42bitrd 282 . . . . . 6 (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ}))
4443anbi2d 631 . . . . 5 (𝑊 ∈ ℂPreHil → ((𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ})))
4510, 44bitrd 282 . . . 4 (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ})))
4645pm5.32ri 579 . . 3 ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil))
472, 3, 463bitr4ri 307 . 2 ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))
481, 47bitri 278 1 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ⊆ wss 3910  {cpr 4542  ‘cfv 6328  (class class class)co 7130  ℂcc 10512  ℝcr 10513  Basecbs 16462   ↾s cress 16463  Scalarcsca 16547  TopOpenctopn 16674  DivRingcdr 19478  SubRingcsubrg 19507  LVecclvec 19850  ℂfldccnfld 20521  Clsdccld 21600  NrmVeccnvc 23167  ℂPreHilccph 23750  CMetSpccms 23915  Bancbn 23916  ℂHilchl 23917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-rest 16675  df-topn 16676  df-0g 16694  df-gsum 16695  df-topgen 16696  df-pt 16697  df-prds 16700  df-xrs 16754  df-qtop 16759  df-imas 16760  df-xps 16762  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-grp 18085  df-minusg 18086  df-mulg 18204  df-subg 18255  df-cntz 18426  df-cmn 18887  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-drng 19480  df-subrg 19509  df-lvec 19851  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-fbas 20518  df-fg 20519  df-cnfld 20522  df-phl 20746  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cld 21603  df-ntr 21604  df-cls 21605  df-nei 21682  df-cn 21811  df-cnp 21812  df-haus 21899  df-cmp 21971  df-tx 22146  df-hmeo 22339  df-fil 22430  df-flim 22523  df-fcls 22525  df-xms 22906  df-ms 22907  df-tms 22908  df-nvc 23173  df-cncf 23462  df-cph 23752  df-cfil 23838  df-cmet 23840  df-cms 23918  df-bn 23919  df-hl 23920 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator