MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishl2 Structured version   Visualization version   GIF version

Theorem ishl2 25246
Description: A Hilbert space is a complete subcomplex pre-Hilbert space over or . (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
hlress.f 𝐹 = (Scalar‘𝑊)
hlress.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ishl2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))

Proof of Theorem ishl2
StepHypRef Expression
1 ishl 25238 . 2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
2 df-3an 1088 . . 3 ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil))
3 3ancomb 1098 . . 3 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil))
4 cphnvc 25052 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)
5 hlress.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
65isbn 25214 . . . . . . . 8 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
7 3anass 1094 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
86, 7bitri 275 . . . . . . 7 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
98baib 535 . . . . . 6 (𝑊 ∈ NrmVec → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
104, 9syl 17 . . . . 5 (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
11 hlress.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
125, 11cphsca 25055 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))
1312eleq1d 2813 . . . . . . 7 (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ (ℂflds 𝐾) ∈ CMetSp))
145, 11cphsubrg 25056 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
15 cphlvec 25051 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
165lvecdrng 20988 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
1715, 16syl 17 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing)
1812, 17eqeltrrd 2829 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → (ℂflds 𝐾) ∈ DivRing)
19 eqid 2729 . . . . . . . . . . 11 (ℂflds 𝐾) = (ℂflds 𝐾)
2019cncdrg 25235 . . . . . . . . . 10 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing ∧ (ℂflds 𝐾) ∈ CMetSp) → 𝐾 ∈ {ℝ, ℂ})
21203expia 1121 . . . . . . . . 9 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing) → ((ℂflds 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ}))
2214, 18, 21syl2anc 584 . . . . . . . 8 (𝑊 ∈ ℂPreHil → ((ℂflds 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ}))
23 elpri 4609 . . . . . . . . 9 (𝐾 ∈ {ℝ, ℂ} → (𝐾 = ℝ ∨ 𝐾 = ℂ))
24 oveq2 7377 . . . . . . . . . . 11 (𝐾 = ℝ → (ℂflds 𝐾) = (ℂflds ℝ))
25 eqid 2729 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2625recld2 24679 . . . . . . . . . . . 12 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
27 cncms 25231 . . . . . . . . . . . . 13 fld ∈ CMetSp
28 ax-resscn 11101 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
29 eqid 2729 . . . . . . . . . . . . . 14 (ℂflds ℝ) = (ℂflds ℝ)
30 cnfldbas 21244 . . . . . . . . . . . . . 14 ℂ = (Base‘ℂfld)
3129, 30, 25cmsss 25227 . . . . . . . . . . . . 13 ((ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ) → ((ℂflds ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld))))
3227, 28, 31mp2an 692 . . . . . . . . . . . 12 ((ℂflds ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)))
3326, 32mpbir 231 . . . . . . . . . . 11 (ℂflds ℝ) ∈ CMetSp
3424, 33eqeltrdi 2836 . . . . . . . . . 10 (𝐾 = ℝ → (ℂflds 𝐾) ∈ CMetSp)
35 oveq2 7377 . . . . . . . . . . 11 (𝐾 = ℂ → (ℂflds 𝐾) = (ℂflds ℂ))
3630ressid 17190 . . . . . . . . . . . . 13 (ℂfld ∈ CMetSp → (ℂflds ℂ) = ℂfld)
3727, 36ax-mp 5 . . . . . . . . . . . 12 (ℂflds ℂ) = ℂfld
3837, 27eqeltri 2824 . . . . . . . . . . 11 (ℂflds ℂ) ∈ CMetSp
3935, 38eqeltrdi 2836 . . . . . . . . . 10 (𝐾 = ℂ → (ℂflds 𝐾) ∈ CMetSp)
4034, 39jaoi 857 . . . . . . . . 9 ((𝐾 = ℝ ∨ 𝐾 = ℂ) → (ℂflds 𝐾) ∈ CMetSp)
4123, 40syl 17 . . . . . . . 8 (𝐾 ∈ {ℝ, ℂ} → (ℂflds 𝐾) ∈ CMetSp)
4222, 41impbid1 225 . . . . . . 7 (𝑊 ∈ ℂPreHil → ((ℂflds 𝐾) ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ}))
4313, 42bitrd 279 . . . . . 6 (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ}))
4443anbi2d 630 . . . . 5 (𝑊 ∈ ℂPreHil → ((𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ})))
4510, 44bitrd 279 . . . 4 (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ})))
4645pm5.32ri 575 . . 3 ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil))
472, 3, 463bitr4ri 304 . 2 ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))
481, 47bitri 275 1 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3911  {cpr 4587  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  Basecbs 17155  s cress 17176  Scalarcsca 17199  TopOpenctopn 17360  SubRingcsubrg 20454  DivRingcdr 20614  LVecclvec 20985  fldccnfld 21240  Clsdccld 22879  NrmVeccnvc 24445  ℂPreHilccph 25042  CMetSpccms 25208  Bancbn 25209  ℂHilchl 25210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-lvec 20986  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-phl 21511  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-flim 23802  df-fcls 23804  df-xms 24184  df-ms 24185  df-tms 24186  df-nvc 24451  df-cncf 24747  df-cph 25044  df-cfil 25131  df-cmet 25133  df-cms 25211  df-bn 25212  df-hl 25213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator