![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishl2 | Structured version Visualization version GIF version |
Description: A Hilbert space is a complete subcomplex pre-Hilbert space over ℝ or ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlress.f | ⊢ 𝐹 = (Scalar‘𝑊) |
hlress.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
ishl2 | ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl 25415 | . 2 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | |
2 | df-3an 1089 | . . 3 ⊢ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil)) | |
3 | 3ancomb 1099 | . . 3 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil)) | |
4 | cphnvc 25229 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec) | |
5 | hlress.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | 5 | isbn 25391 | . . . . . . . 8 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
7 | 3anass 1095 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) | |
8 | 6, 7 | bitri 275 | . . . . . . 7 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
9 | 8 | baib 535 | . . . . . 6 ⊢ (𝑊 ∈ NrmVec → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
10 | 4, 9 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))) |
11 | hlress.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝐹) | |
12 | 5, 11 | cphsca 25232 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
13 | 12 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ (ℂfld ↾s 𝐾) ∈ CMetSp)) |
14 | 5, 11 | cphsubrg 25233 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
15 | cphlvec 25228 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
16 | 5 | lvecdrng 21127 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
17 | 15, 16 | syl 17 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing) |
18 | 12, 17 | eqeltrrd 2845 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂPreHil → (ℂfld ↾s 𝐾) ∈ DivRing) |
19 | eqid 2740 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
20 | 19 | cncdrg 25412 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing ∧ (ℂfld ↾s 𝐾) ∈ CMetSp) → 𝐾 ∈ {ℝ, ℂ}) |
21 | 20 | 3expia 1121 | . . . . . . . . 9 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing) → ((ℂfld ↾s 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ})) |
22 | 14, 18, 21 | syl2anc 583 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂPreHil → ((ℂfld ↾s 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ})) |
23 | elpri 4671 | . . . . . . . . 9 ⊢ (𝐾 ∈ {ℝ, ℂ} → (𝐾 = ℝ ∨ 𝐾 = ℂ)) | |
24 | oveq2 7456 | . . . . . . . . . . 11 ⊢ (𝐾 = ℝ → (ℂfld ↾s 𝐾) = (ℂfld ↾s ℝ)) | |
25 | eqid 2740 | . . . . . . . . . . . . 13 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
26 | 25 | recld2 24855 | . . . . . . . . . . . 12 ⊢ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)) |
27 | cncms 25408 | . . . . . . . . . . . . 13 ⊢ ℂfld ∈ CMetSp | |
28 | ax-resscn 11241 | . . . . . . . . . . . . 13 ⊢ ℝ ⊆ ℂ | |
29 | eqid 2740 | . . . . . . . . . . . . . 14 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
30 | cnfldbas 21391 | . . . . . . . . . . . . . 14 ⊢ ℂ = (Base‘ℂfld) | |
31 | 29, 30, 25 | cmsss 25404 | . . . . . . . . . . . . 13 ⊢ ((ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ) → ((ℂfld ↾s ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)))) |
32 | 27, 28, 31 | mp2an 691 | . . . . . . . . . . . 12 ⊢ ((ℂfld ↾s ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld))) |
33 | 26, 32 | mpbir 231 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s ℝ) ∈ CMetSp |
34 | 24, 33 | eqeltrdi 2852 | . . . . . . . . . 10 ⊢ (𝐾 = ℝ → (ℂfld ↾s 𝐾) ∈ CMetSp) |
35 | oveq2 7456 | . . . . . . . . . . 11 ⊢ (𝐾 = ℂ → (ℂfld ↾s 𝐾) = (ℂfld ↾s ℂ)) | |
36 | 30 | ressid 17303 | . . . . . . . . . . . . 13 ⊢ (ℂfld ∈ CMetSp → (ℂfld ↾s ℂ) = ℂfld) |
37 | 27, 36 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ (ℂfld ↾s ℂ) = ℂfld |
38 | 37, 27 | eqeltri 2840 | . . . . . . . . . . 11 ⊢ (ℂfld ↾s ℂ) ∈ CMetSp |
39 | 35, 38 | eqeltrdi 2852 | . . . . . . . . . 10 ⊢ (𝐾 = ℂ → (ℂfld ↾s 𝐾) ∈ CMetSp) |
40 | 34, 39 | jaoi 856 | . . . . . . . . 9 ⊢ ((𝐾 = ℝ ∨ 𝐾 = ℂ) → (ℂfld ↾s 𝐾) ∈ CMetSp) |
41 | 23, 40 | syl 17 | . . . . . . . 8 ⊢ (𝐾 ∈ {ℝ, ℂ} → (ℂfld ↾s 𝐾) ∈ CMetSp) |
42 | 22, 41 | impbid1 225 | . . . . . . 7 ⊢ (𝑊 ∈ ℂPreHil → ((ℂfld ↾s 𝐾) ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ})) |
43 | 13, 42 | bitrd 279 | . . . . . 6 ⊢ (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ})) |
44 | 43 | anbi2d 629 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → ((𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}))) |
45 | 10, 44 | bitrd 279 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}))) |
46 | 45 | pm5.32ri 575 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil)) |
47 | 2, 3, 46 | 3bitr4ri 304 | . 2 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
48 | 1, 47 | bitri 275 | 1 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {cpr 4650 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 TopOpenctopn 17481 SubRingcsubrg 20595 DivRingcdr 20751 LVecclvec 21124 ℂfldccnfld 21387 Clsdccld 23045 NrmVeccnvc 24615 ℂPreHilccph 25219 CMetSpccms 25385 Bancbn 25386 ℂHilchl 25387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-subrng 20572 df-subrg 20597 df-drng 20753 df-lvec 21125 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-phl 21667 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-flim 23968 df-fcls 23970 df-xms 24351 df-ms 24352 df-tms 24353 df-nvc 24621 df-cncf 24923 df-cph 25221 df-cfil 25308 df-cmet 25310 df-cms 25388 df-bn 25389 df-hl 25390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |