Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq12daf Structured version   Visualization version   GIF version

Theorem iuneq12daf 32577
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 13-Mar-2017.)
Hypotheses
Ref Expression
iuneq12daf.1 𝑥𝜑
iuneq12daf.2 𝑥𝐴
iuneq12daf.3 𝑥𝐵
iuneq12daf.4 (𝜑𝐴 = 𝐵)
iuneq12daf.5 ((𝜑𝑥𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12daf (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)

Proof of Theorem iuneq12daf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iuneq12daf.1 . . . . 5 𝑥𝜑
2 iuneq12daf.5 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 = 𝐷)
32eleq2d 2825 . . . . 5 ((𝜑𝑥𝐴) → (𝑦𝐶𝑦𝐷))
41, 3rexbida 3270 . . . 4 (𝜑 → (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐴 𝑦𝐷))
5 iuneq12daf.4 . . . . 5 (𝜑𝐴 = 𝐵)
6 iuneq12daf.2 . . . . . 6 𝑥𝐴
7 iuneq12daf.3 . . . . . 6 𝑥𝐵
86, 7rexeqf 3352 . . . . 5 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝐷 ↔ ∃𝑥𝐵 𝑦𝐷))
95, 8syl 17 . . . 4 (𝜑 → (∃𝑥𝐴 𝑦𝐷 ↔ ∃𝑥𝐵 𝑦𝐷))
104, 9bitrd 279 . . 3 (𝜑 → (∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷))
1110alrimiv 1925 . 2 (𝜑 → ∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷))
12 abbi 2805 . . 3 (∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷) → {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐷})
13 df-iun 4998 . . 3 𝑥𝐴 𝐶 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐶}
14 df-iun 4998 . . 3 𝑥𝐵 𝐷 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝐷}
1512, 13, 143eqtr4g 2800 . 2 (∀𝑦(∃𝑥𝐴 𝑦𝐶 ↔ ∃𝑥𝐵 𝑦𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
1611, 15syl 17 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wnf 1780  wcel 2106  {cab 2712  wnfc 2888  wrex 3068   ciun 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-iun 4998
This theorem is referenced by:  measvunilem0  34194
  Copyright terms: Public domain W3C validator