Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvunilem0 Structured version   Visualization version   GIF version

Theorem measvunilem0 34177
Description: Lemma for measvuni 34178. (Contributed by Thierry Arnoux, 6-Mar-2017.)
Hypothesis
Ref Expression
measvunilem.0.1 𝑥𝐴
Assertion
Ref Expression
measvunilem0 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem measvunilem0
StepHypRef Expression
1 simp3l 1201 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 ≼ ω)
2 ctex 9023 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
3 measvunilem.0.1 . . . 4 𝑥𝐴
43esum0 34013 . . 3 (𝐴 ∈ V → Σ*𝑥𝐴0 = 0)
51, 2, 43syl 18 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴0 = 0)
6 nfv 1913 . . . 4 𝑥 𝑀 ∈ (measures‘𝑆)
7 nfra1 3290 . . . 4 𝑥𝑥𝐴 𝐵 ∈ {∅}
8 nfcv 2908 . . . . . 6 𝑥
9 nfcv 2908 . . . . . 6 𝑥ω
103, 8, 9nfbr 5213 . . . . 5 𝑥 𝐴 ≼ ω
11 nfdisj1 5147 . . . . 5 𝑥Disj 𝑥𝐴 𝐵
1210, 11nfan 1898 . . . 4 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
136, 7, 12nf3an 1900 . . 3 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
14 eqidd 2741 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = 𝐴)
15 simp2 1137 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵 ∈ {∅})
1615r19.21bi 3257 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 ∈ {∅})
17 elsni 4665 . . . . . 6 (𝐵 ∈ {∅} → 𝐵 = ∅)
1816, 17syl 17 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → 𝐵 = ∅)
1918fveq2d 6924 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) = (𝑀‘∅))
20 measvnul 34170 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
21203ad2ant1 1133 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀‘∅) = 0)
2221adantr 480 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀‘∅) = 0)
2319, 22eqtrd 2780 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥𝐴) → (𝑀𝐵) = 0)
2413, 14, 23esumeq12dvaf 33995 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑥𝐴0)
2513, 3, 3, 14, 18iuneq12daf 32579 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = 𝑥𝐴 ∅)
26 iun0 5085 . . . . 5 𝑥𝐴 ∅ = ∅
2725, 26eqtrdi 2796 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = ∅)
2827fveq2d 6924 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀‘∅))
2928, 21eqtrd 2780 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = 0)
305, 24, 293eqtr4rd 2791 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wnfc 2893  wral 3067  Vcvv 3488  c0 4352  {csn 4648   ciun 5015  Disj wdisj 5133   class class class wbr 5166  cfv 6573  ωcom 7903  cdom 9001  0cc0 11184  Σ*cesum 33991  measurescmeas 34159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-xadd 13176  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-ds 17333  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-ordt 17561  df-xrs 17562  df-mre 17644  df-mrc 17645  df-acs 17647  df-ps 18636  df-tsr 18637  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-cntz 19357  df-cmn 19824  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-nei 23127  df-cn 23256  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tsms 24156  df-esum 33992  df-meas 34160
This theorem is referenced by:  measvuni  34178
  Copyright terms: Public domain W3C validator