Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvunilem0 | Structured version Visualization version GIF version |
Description: Lemma for measvuni 32478. (Contributed by Thierry Arnoux, 6-Mar-2017.) |
Ref | Expression |
---|---|
measvunilem.0.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
measvunilem0 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1201 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 ≼ ω) | |
2 | ctex 8828 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | measvunilem.0.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | esum0 32313 | . . 3 ⊢ (𝐴 ∈ V → Σ*𝑥 ∈ 𝐴0 = 0) |
5 | 1, 2, 4 | 3syl 18 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴0 = 0) |
6 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥 𝑀 ∈ (measures‘𝑆) | |
7 | nfra1 3264 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} | |
8 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑥 ≼ | |
9 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑥ω | |
10 | 3, 8, 9 | nfbr 5143 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ≼ ω |
11 | nfdisj1 5075 | . . . . 5 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 | |
12 | 10, 11 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵) |
13 | 6, 7, 12 | nf3an 1904 | . . 3 ⊢ Ⅎ𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) |
14 | eqidd 2738 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 = 𝐴) | |
15 | simp2 1137 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅}) | |
16 | 15 | r19.21bi 3231 | . . . . . 6 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {∅}) |
17 | elsni 4594 | . . . . . 6 ⊢ (𝐵 ∈ {∅} → 𝐵 = ∅) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 = ∅) |
19 | 18 | fveq2d 6833 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) = (𝑀‘∅)) |
20 | measvnul 32470 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
21 | 20 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∅) = 0) |
22 | 21 | adantr 482 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘∅) = 0) |
23 | 19, 22 | eqtrd 2777 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) = 0) |
24 | 13, 14, 23 | esumeq12dvaf 32295 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴(𝑀‘𝐵) = Σ*𝑥 ∈ 𝐴0) |
25 | 13, 3, 3, 14, 18 | iuneq12daf 31181 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ∅) |
26 | iun0 5013 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ | |
27 | 25, 26 | eqtrdi 2793 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) |
28 | 27 | fveq2d 6833 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑀‘∅)) |
29 | 28, 21 | eqtrd 2777 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = 0) |
30 | 5, 24, 29 | 3eqtr4rd 2788 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Ⅎwnfc 2885 ∀wral 3062 Vcvv 3442 ∅c0 4273 {csn 4577 ∪ ciun 4945 Disj wdisj 5061 class class class wbr 5096 ‘cfv 6483 ωcom 7784 ≼ cdom 8806 0cc0 10976 Σ*cesum 32291 measurescmeas 32459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-disj 5062 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-xadd 12954 df-ioo 13188 df-ioc 13189 df-ico 13190 df-icc 13191 df-fz 13345 df-fzo 13488 df-seq 13827 df-hash 14150 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-tset 17078 df-ple 17079 df-ds 17081 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-ordt 17309 df-xrs 17310 df-mre 17392 df-mrc 17393 df-acs 17395 df-ps 18381 df-tsr 18382 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-cntz 19019 df-cmn 19483 df-fbas 20699 df-fg 20700 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-ntr 22276 df-nei 22354 df-cn 22483 df-haus 22571 df-fil 23102 df-fm 23194 df-flim 23195 df-flf 23196 df-tsms 23383 df-esum 32292 df-meas 32460 |
This theorem is referenced by: measvuni 32478 |
Copyright terms: Public domain | W3C validator |