![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvunilem0 | Structured version Visualization version GIF version |
Description: Lemma for measvuni 34178. (Contributed by Thierry Arnoux, 6-Mar-2017.) |
Ref | Expression |
---|---|
measvunilem.0.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
measvunilem0 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1201 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 ≼ ω) | |
2 | ctex 9023 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | measvunilem.0.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | esum0 34013 | . . 3 ⊢ (𝐴 ∈ V → Σ*𝑥 ∈ 𝐴0 = 0) |
5 | 1, 2, 4 | 3syl 18 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴0 = 0) |
6 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥 𝑀 ∈ (measures‘𝑆) | |
7 | nfra1 3290 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} | |
8 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥 ≼ | |
9 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥ω | |
10 | 3, 8, 9 | nfbr 5213 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ≼ ω |
11 | nfdisj1 5147 | . . . . 5 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 | |
12 | 10, 11 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵) |
13 | 6, 7, 12 | nf3an 1900 | . . 3 ⊢ Ⅎ𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) |
14 | eqidd 2741 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 = 𝐴) | |
15 | simp2 1137 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅}) | |
16 | 15 | r19.21bi 3257 | . . . . . 6 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {∅}) |
17 | elsni 4665 | . . . . . 6 ⊢ (𝐵 ∈ {∅} → 𝐵 = ∅) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 = ∅) |
19 | 18 | fveq2d 6924 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) = (𝑀‘∅)) |
20 | measvnul 34170 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
21 | 20 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∅) = 0) |
22 | 21 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘∅) = 0) |
23 | 19, 22 | eqtrd 2780 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) = 0) |
24 | 13, 14, 23 | esumeq12dvaf 33995 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴(𝑀‘𝐵) = Σ*𝑥 ∈ 𝐴0) |
25 | 13, 3, 3, 14, 18 | iuneq12daf 32579 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ∅) |
26 | iun0 5085 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ | |
27 | 25, 26 | eqtrdi 2796 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) |
28 | 27 | fveq2d 6924 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑀‘∅)) |
29 | 28, 21 | eqtrd 2780 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = 0) |
30 | 5, 24, 29 | 3eqtr4rd 2791 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 Vcvv 3488 ∅c0 4352 {csn 4648 ∪ ciun 5015 Disj wdisj 5133 class class class wbr 5166 ‘cfv 6573 ωcom 7903 ≼ cdom 9001 0cc0 11184 Σ*cesum 33991 measurescmeas 34159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-xadd 13176 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-tset 17330 df-ple 17331 df-ds 17333 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-ordt 17561 df-xrs 17562 df-mre 17644 df-mrc 17645 df-acs 17647 df-ps 18636 df-tsr 18637 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-cntz 19357 df-cmn 19824 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-ntr 23049 df-nei 23127 df-cn 23256 df-haus 23344 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tsms 24156 df-esum 33992 df-meas 34160 |
This theorem is referenced by: measvuni 34178 |
Copyright terms: Public domain | W3C validator |