![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvunilem0 | Structured version Visualization version GIF version |
Description: Lemma for measvuni 33200. (Contributed by Thierry Arnoux, 6-Mar-2017.) |
Ref | Expression |
---|---|
measvunilem.0.1 | β’ β²π₯π΄ |
Ref | Expression |
---|---|
measvunilem0 | β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β (πββͺ π₯ β π΄ π΅) = Ξ£*π₯ β π΄(πβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1201 | . . 3 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β π΄ βΌ Ο) | |
2 | ctex 8955 | . . 3 β’ (π΄ βΌ Ο β π΄ β V) | |
3 | measvunilem.0.1 | . . . 4 β’ β²π₯π΄ | |
4 | 3 | esum0 33035 | . . 3 β’ (π΄ β V β Ξ£*π₯ β π΄0 = 0) |
5 | 1, 2, 4 | 3syl 18 | . 2 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β Ξ£*π₯ β π΄0 = 0) |
6 | nfv 1917 | . . . 4 β’ β²π₯ π β (measuresβπ) | |
7 | nfra1 3281 | . . . 4 β’ β²π₯βπ₯ β π΄ π΅ β {β } | |
8 | nfcv 2903 | . . . . . 6 β’ β²π₯ βΌ | |
9 | nfcv 2903 | . . . . . 6 β’ β²π₯Ο | |
10 | 3, 8, 9 | nfbr 5194 | . . . . 5 β’ β²π₯ π΄ βΌ Ο |
11 | nfdisj1 5126 | . . . . 5 β’ β²π₯Disj π₯ β π΄ π΅ | |
12 | 10, 11 | nfan 1902 | . . . 4 β’ β²π₯(π΄ βΌ Ο β§ Disj π₯ β π΄ π΅) |
13 | 6, 7, 12 | nf3an 1904 | . . 3 β’ β²π₯(π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) |
14 | eqidd 2733 | . . 3 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β π΄ = π΄) | |
15 | simp2 1137 | . . . . . . 7 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β βπ₯ β π΄ π΅ β {β }) | |
16 | 15 | r19.21bi 3248 | . . . . . 6 β’ (((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β§ π₯ β π΄) β π΅ β {β }) |
17 | elsni 4644 | . . . . . 6 β’ (π΅ β {β } β π΅ = β ) | |
18 | 16, 17 | syl 17 | . . . . 5 β’ (((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β§ π₯ β π΄) β π΅ = β ) |
19 | 18 | fveq2d 6892 | . . . 4 β’ (((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β§ π₯ β π΄) β (πβπ΅) = (πββ )) |
20 | measvnul 33192 | . . . . . 6 β’ (π β (measuresβπ) β (πββ ) = 0) | |
21 | 20 | 3ad2ant1 1133 | . . . . 5 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β (πββ ) = 0) |
22 | 21 | adantr 481 | . . . 4 β’ (((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β§ π₯ β π΄) β (πββ ) = 0) |
23 | 19, 22 | eqtrd 2772 | . . 3 β’ (((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β§ π₯ β π΄) β (πβπ΅) = 0) |
24 | 13, 14, 23 | esumeq12dvaf 33017 | . 2 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β Ξ£*π₯ β π΄(πβπ΅) = Ξ£*π₯ β π΄0) |
25 | 13, 3, 3, 14, 18 | iuneq12daf 31775 | . . . . 5 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β βͺ π₯ β π΄ π΅ = βͺ π₯ β π΄ β ) |
26 | iun0 5064 | . . . . 5 β’ βͺ π₯ β π΄ β = β | |
27 | 25, 26 | eqtrdi 2788 | . . . 4 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β βͺ π₯ β π΄ π΅ = β ) |
28 | 27 | fveq2d 6892 | . . 3 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β (πββͺ π₯ β π΄ π΅) = (πββ )) |
29 | 28, 21 | eqtrd 2772 | . 2 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β (πββͺ π₯ β π΄ π΅) = 0) |
30 | 5, 24, 29 | 3eqtr4rd 2783 | 1 β’ ((π β (measuresβπ) β§ βπ₯ β π΄ π΅ β {β } β§ (π΄ βΌ Ο β§ Disj π₯ β π΄ π΅)) β (πββͺ π₯ β π΄ π΅) = Ξ£*π₯ β π΄(πβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β²wnfc 2883 βwral 3061 Vcvv 3474 β c0 4321 {csn 4627 βͺ ciun 4996 Disj wdisj 5112 class class class wbr 5147 βcfv 6540 Οcom 7851 βΌ cdom 8933 0cc0 11106 Ξ£*cesum 33013 measurescmeas 33181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-xadd 13089 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-tset 17212 df-ple 17213 df-ds 17215 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-ordt 17443 df-xrs 17444 df-mre 17526 df-mrc 17527 df-acs 17529 df-ps 18515 df-tsr 18516 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-cntz 19175 df-cmn 19644 df-fbas 20933 df-fg 20934 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-ntr 22515 df-nei 22593 df-cn 22722 df-haus 22810 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-tsms 23622 df-esum 33014 df-meas 33182 |
This theorem is referenced by: measvuni 33200 |
Copyright terms: Public domain | W3C validator |