![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measvunilem0 | Structured version Visualization version GIF version |
Description: Lemma for measvuni 31090. (Contributed by Thierry Arnoux, 6-Mar-2017.) |
Ref | Expression |
---|---|
measvunilem.0.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
measvunilem0 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1194 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 ≼ ω) | |
2 | ctex 8372 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | measvunilem.0.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | esum0 30925 | . . 3 ⊢ (𝐴 ∈ V → Σ*𝑥 ∈ 𝐴0 = 0) |
5 | 1, 2, 4 | 3syl 18 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴0 = 0) |
6 | nfv 1892 | . . . 4 ⊢ Ⅎ𝑥 𝑀 ∈ (measures‘𝑆) | |
7 | nfra1 3186 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} | |
8 | nfcv 2949 | . . . . . 6 ⊢ Ⅎ𝑥 ≼ | |
9 | nfcv 2949 | . . . . . 6 ⊢ Ⅎ𝑥ω | |
10 | 3, 8, 9 | nfbr 5009 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ≼ ω |
11 | nfdisj1 4943 | . . . . 5 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 | |
12 | 10, 11 | nfan 1881 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵) |
13 | 6, 7, 12 | nf3an 1883 | . . 3 ⊢ Ⅎ𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) |
14 | eqidd 2796 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 = 𝐴) | |
15 | simp2 1130 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅}) | |
16 | 15 | r19.21bi 3175 | . . . . . 6 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {∅}) |
17 | elsni 4489 | . . . . . 6 ⊢ (𝐵 ∈ {∅} → 𝐵 = ∅) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐵 = ∅) |
19 | 18 | fveq2d 6542 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) = (𝑀‘∅)) |
20 | measvnul 31082 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
21 | 20 | 3ad2ant1 1126 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∅) = 0) |
22 | 21 | adantr 481 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘∅) = 0) |
23 | 19, 22 | eqtrd 2831 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑀‘𝐵) = 0) |
24 | 13, 14, 23 | esumeq12dvaf 30907 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴(𝑀‘𝐵) = Σ*𝑥 ∈ 𝐴0) |
25 | 13, 3, 3, 14, 18 | iuneq12daf 29998 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ∅) |
26 | iun0 4884 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ | |
27 | 25, 26 | syl6eq 2847 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) |
28 | 27 | fveq2d 6542 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑀‘∅)) |
29 | 28, 21 | eqtrd 2831 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = 0) |
30 | 5, 24, 29 | 3eqtr4rd 2842 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ {∅} ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪ 𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 Ⅎwnfc 2933 ∀wral 3105 Vcvv 3437 ∅c0 4211 {csn 4472 ∪ ciun 4825 Disj wdisj 4930 class class class wbr 4962 ‘cfv 6225 ωcom 7436 ≼ cdom 8355 0cc0 10383 Σ*cesum 30903 measurescmeas 31071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-disj 4931 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-om 7437 df-1st 7545 df-2nd 7546 df-supp 7682 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fsupp 8680 df-fi 8721 df-sup 8752 df-inf 8753 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-q 12198 df-xadd 12358 df-ioo 12592 df-ioc 12593 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-seq 13220 df-hash 13541 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-tset 16413 df-ple 16414 df-ds 16416 df-rest 16525 df-topn 16526 df-0g 16544 df-gsum 16545 df-topgen 16546 df-ordt 16603 df-xrs 16604 df-mre 16686 df-mrc 16687 df-acs 16689 df-ps 17639 df-tsr 17640 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-cntz 18188 df-cmn 18635 df-fbas 20224 df-fg 20225 df-top 21186 df-topon 21203 df-topsp 21225 df-bases 21238 df-ntr 21312 df-nei 21390 df-cn 21519 df-haus 21607 df-fil 22138 df-fm 22230 df-flim 22231 df-flf 22232 df-tsms 22418 df-esum 30904 df-meas 31072 |
This theorem is referenced by: measvuni 31090 |
Copyright terms: Public domain | W3C validator |