| Metamath
Proof Explorer Theorem List (p. 487 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dig1 48601 | All but one digits of 1 are 0. (Contributed by AV, 24-May-2020.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘𝐵)1) = if(𝐾 = 0, 1, 0)) | ||
| Theorem | 0dig1 48602 | The 0 th digit of 1 is 1 in any positional system. (Contributed by AV, 28-May-2020.) |
| ⊢ (𝐵 ∈ (ℤ≥‘2) → (0(digit‘𝐵)1) = 1) | ||
| Theorem | 0dig2pr01 48603 | The integers 0 and 1 correspond to their last bit. (Contributed by AV, 28-May-2010.) |
| ⊢ (𝑁 ∈ {0, 1} → (0(digit‘2)𝑁) = 𝑁) | ||
| Theorem | dig2nn0 48604 | A digit of a nonnegative integer 𝑁 in a binary system is either 0 or 1. (Contributed by AV, 24-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾(digit‘2)𝑁) ∈ {0, 1}) | ||
| Theorem | 0dig2nn0e 48605 | The last bit of an even integer is 0. (Contributed by AV, 3-Jun-2010.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 0) | ||
| Theorem | 0dig2nn0o 48606 | The last bit of an odd integer is 1. (Contributed by AV, 3-Jun-2010.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (0(digit‘2)𝑁) = 1) | ||
| Theorem | dig2bits 48607 | The 𝐾 th digit of a nonnegative integer 𝑁 in a binary system is its 𝐾 th bit. (Contributed by AV, 24-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0) → ((𝐾(digit‘2)𝑁) = 1 ↔ 𝐾 ∈ (bits‘𝑁))) | ||
| Theorem | dignn0flhalflem1 48608 | Lemma 1 for dignn0flhalf 48611. (Contributed by AV, 7-Jun-2012.) |
| ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁)))) | ||
| Theorem | dignn0flhalflem2 48609 | Lemma 2 for dignn0flhalf 48611. (Contributed by AV, 7-Jun-2012.) |
| ⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁)))) | ||
| Theorem | dignn0ehalf 48610 | The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010.) |
| ⊢ (((𝐴 / 2) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2))) | ||
| Theorem | dignn0flhalf 48611 | The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))) | ||
| Theorem | nn0sumshdiglemA 48612* | Lemma for nn0sumshdig 48616 (induction step, even multiplier). (Contributed by AV, 3-Jun-2020.) |
| ⊢ (((𝑎 ∈ ℕ ∧ (𝑎 / 2) ∈ ℕ) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
| Theorem | nn0sumshdiglemB 48613* | Lemma for nn0sumshdig 48616 (induction step, odd multiplier). (Contributed by AV, 7-Jun-2020.) |
| ⊢ (((𝑎 ∈ ℕ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → (∀𝑥 ∈ ℕ0 ((#b‘𝑥) = 𝑦 → 𝑥 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑥) · (2↑𝑘))) → ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
| Theorem | nn0sumshdiglem1 48614* | Lemma 1 for nn0sumshdig 48616 (induction step). (Contributed by AV, 7-Jun-2020.) |
| ⊢ (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b‘𝑎) = 𝑦 → 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b‘𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))) | ||
| Theorem | nn0sumshdiglem2 48615* | Lemma 2 for nn0sumshdig 48616. (Contributed by AV, 7-Jun-2020.) |
| ⊢ (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b‘𝑎) = 𝐿 → 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))) | ||
| Theorem | nn0sumshdig 48616* | A nonnegative integer can be represented as sum of its shifted bits. (Contributed by AV, 7-Jun-2020.) |
| ⊢ (𝐴 ∈ ℕ0 → 𝐴 = Σ𝑘 ∈ (0..^(#b‘𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘))) | ||
| Theorem | nn0mulfsum 48617* | Trivial algorithm to calculate the product of two nonnegative integers 𝑎 and 𝑏 by adding 𝑏 to itself 𝑎 times. (Contributed by AV, 17-May-2020.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = Σ𝑘 ∈ (1...𝐴)𝐵) | ||
| Theorem | nn0mullong 48618* | Standard algorithm (also known as "long multiplication" or "grade-school multiplication") to calculate the product of two nonnegative integers 𝑎 and 𝑏 by multiplying the multiplicand 𝑏 by each digit of the multiplier 𝑎 and then add up all the properly shifted results. Here, the binary representation of the multiplier 𝑎 is used, i.e., the above mentioned "digits" are 0 or 1. This is a similar result as provided by smumul 16470. (Contributed by AV, 7-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = Σ𝑘 ∈ (0..^(#b‘𝐴))(((𝑘(digit‘2)𝐴) · (2↑𝑘)) · 𝐵)) | ||
According to Wikipedia ("Arity", https://en.wikipedia.org/wiki/Arity, 19-May-2024): "In logic, mathematics, and computer science, arity is the number of arguments or operands taken by a function, operation or relation." N-ary functions are often also called multivariate functions, without indicating the actual number of arguments. See also Wikipedia ("Multivariate functions", 19-May-2024, https://en.wikipedia.org/wiki/Function_(mathematics)#Multivariate_functions ): "A multivariate function, multivariable function, or function of several variables is a function that depends on several arguments. ... Formally, a function of n variables is a function whose domain is a set of n-tuples. For example, multiplication of integers is a function of two variables, or bivariate function, whose domain is the set of all ordered pairs (2-tuples) of integers, and whose codomain is the set of integers. The same is true for every binary operation. Commonly, an n-tuple is denoted enclosed between parentheses, such as in ( 1 , 2 , ... , n ). When using functional notation, one usually omits the parentheses surrounding tuples, writing f ( x1 , ... , xn ) instead of f ( ( x1 , ... , xn ) ). Given n sets X1 , ... , Xn , the set of all n-tuples ( x1 , ... , xn ) such that x1 is an element of X1 , ... , xn is an element of Xn is called the Cartesian product of X1 , ... , Xn , and denoted X1 X ... X Xn . Therefore, a multivariate function is a function that has a Cartesian product or a proper subset of a Cartesian product as a domain: 𝑓:𝑈⟶𝑌 where where the domain 𝑈 has the form 𝑈 ⊆ ((...((𝑋‘1) × (𝑋‘2)) × ...) × (𝑋‘𝑛))." In the following, n-ary functions are defined as mappings (see df-map 8804) from a finite sequence of arguments, which themselves are defined as mappings from the half-open range of nonnegative integers to the domain of each argument. Furthermore, the definition is restricted to endofunctions, meaning that the domain(s) of the argument(s) is identical with its codomain. This means that the domains of all arguments are identical (in contrast to the definition in Wikipedia, see above: here, we have X1 = X2 = ... = Xn = X). For small n, n-ary functions correspond to "usual" functions with a different number of arguments: - n = 0 (nullary functions): These correspond actually to constants, see 0aryfvalelfv 48628 and mapsn 8864: (𝑋 ↑m {∅}) - n = 1 (unary functions): These correspond actually to usual endofunctions, see 1aryenef 48638 and efmndbas 18805: (𝑋 ↑m 𝑋) - n = 2 (binary functions): These correspond to usual operations on two elements of the same set, also called "binary operation" (according to Wikipedia ("Binary operation", 19-May-2024, https://en.wikipedia.org/wiki/Binary_operation 18805): "In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation on a set is a binary operation whose two domains and the codomain are the same set." Sometimes also called "closed internal binary operation"), see 2aryenef 48649 and compare with df-clintop 48192: (𝑋 ↑m (𝑋 × 𝑋)). Instead of using indexed arguments (represented by a mapping as described above), elements of Cartesian exponentiations (𝑈↑↑𝑁) (see df-finxp 37379) could have been used to represent multiple arguments. However, this concept is not fully developed yet (it is within a mathbox), and it is currently based on ordinal numbers, e.g., (𝑈↑↑2o), instead of integers, e.g., (𝑈↑↑2), which is not very practical. The definition df-ixp of infinite Cartesian product could also have been used to represent multiple arguments, but this would have been more cumbersome without any additional advantage. naryfvalixp 48622 shows that both definitions are equivalent. | ||
| Syntax | cnaryf 48619 | Extend the definition of a class to include the n-ary functions. |
| class -aryF | ||
| Definition | df-naryf 48620* | Define the n-ary (endo)functions. (Contributed by AV, 11-May-2024.) (Revised by TA and SN, 7-Jun-2024.) |
| ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) | ||
| Theorem | naryfval 48621 | The set of the n-ary (endo)functions on a class 𝑋. (Contributed by AV, 13-May-2024.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m (𝑋 ↑m 𝐼))) | ||
| Theorem | naryfvalixp 48622* | The set of the n-ary (endo)functions on a class 𝑋 expressed with the notation of infinite Cartesian products. (Contributed by AV, 19-May-2024.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑁-aryF 𝑋) = (𝑋 ↑m X𝑥 ∈ 𝐼 𝑋)) | ||
| Theorem | naryfvalel 48623 | An n-ary (endo)function on a set 𝑋. (Contributed by AV, 14-May-2024.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m 𝐼)⟶𝑋)) | ||
| Theorem | naryrcl 48624 | Reverse closure for n-ary (endo)functions. (Contributed by AV, 14-May-2024.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ (𝐹 ∈ (𝑁-aryF 𝑋) → (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ V)) | ||
| Theorem | naryfvalelfv 48625 | The value of an n-ary (endo)function on a set 𝑋 is an element of 𝑋. (Contributed by AV, 14-May-2024.) |
| ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑁-aryF 𝑋) ∧ 𝐴:𝐼⟶𝑋) → (𝐹‘𝐴) ∈ 𝑋) | ||
| Theorem | naryfvalelwrdf 48626* | An n-ary (endo)function on a set 𝑋 expressed as a function over the set of words on 𝑋 of length 𝑛. (Contributed by AV, 4-Jun-2024.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (𝑁-aryF 𝑋) ↔ 𝐹:{𝑤 ∈ Word 𝑋 ∣ (♯‘𝑤) = 𝑁}⟶𝑋)) | ||
| Theorem | 0aryfvalel 48627* | A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶 ∈ 𝑋, see also 0aryfvalelfv 48628. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) | ||
| Theorem | 0aryfvalelfv 48628* | The value of a nullary (endo)function on a set 𝑋. (Contributed by AV, 19-May-2024.) |
| ⊢ (𝐹 ∈ (0-aryF 𝑋) → ∃𝑥 ∈ 𝑋 (𝐹‘∅) = 𝑥) | ||
| Theorem | 1aryfvalel 48629 | A unary (endo)function on a set 𝑋. (Contributed by AV, 15-May-2024.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (1-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0})⟶𝑋)) | ||
| Theorem | fv1arycl 48630 | Closure of a unary (endo)function. (Contributed by AV, 18-May-2024.) |
| ⊢ ((𝐺 ∈ (1-aryF 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉}) ∈ 𝑋) | ||
| Theorem | 1arympt1 48631* | A unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴:𝑋⟶𝑋) → 𝐹 ∈ (1-aryF 𝑋)) | ||
| Theorem | 1arympt1fv 48632* | The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0}) ↦ (𝐴‘(𝑥‘0))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐵〉}) = (𝐴‘𝐵)) | ||
| Theorem | 1arymaptfv 48633* | The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝐹 ∈ (1-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉}))) | ||
| Theorem | 1arymaptf 48634* | The mapping of unary (endo)functions is a function into the set of endofunctions. (Contributed by AV, 18-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)⟶(𝑋 ↑m 𝑋)) | ||
| Theorem | 1arymaptf1 48635* | The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–1-1→(𝑋 ↑m 𝑋)) | ||
| Theorem | 1arymaptfo 48636* | The mapping of unary (endo)functions is a function onto the set of endofunctions. (Contributed by AV, 18-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–onto→(𝑋 ↑m 𝑋)) | ||
| Theorem | 1arymaptf1o 48637* | The mapping of unary (endo)functions is a one-to-one function onto the set of endofunctions. (Contributed by AV, 19-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (1-aryF 𝑋) ↦ (𝑥 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(1-aryF 𝑋)–1-1-onto→(𝑋 ↑m 𝑋)) | ||
| Theorem | 1aryenef 48638 | The set of unary (endo)functions and the set of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
| ⊢ (1-aryF 𝑋) ≈ (𝑋 ↑m 𝑋) | ||
| Theorem | 1aryenefmnd 48639 | The set of unary (endo)functions and the base set of the monoid of endofunctions are equinumerous. (Contributed by AV, 19-May-2024.) |
| ⊢ (1-aryF 𝑋) ≈ (Base‘(EndoFMnd‘𝑋)) | ||
| Theorem | 2aryfvalel 48640 | A binary (endo)function on a set 𝑋. (Contributed by AV, 20-May-2024.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0, 1})⟶𝑋)) | ||
| Theorem | fv2arycl 48641 | Closure of a binary (endo)function. (Contributed by AV, 20-May-2024.) |
| ⊢ ((𝐺 ∈ (2-aryF 𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐺‘{〈0, 𝐴〉, 〈1, 𝐵〉}) ∈ 𝑋) | ||
| Theorem | 2arympt 48642* | A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋)) | ||
| Theorem | 2arymptfv 48643* | The value of a binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘{〈0, 𝐴〉, 〈1, 𝐵〉}) = (𝐴𝑂𝐵)) | ||
| Theorem | 2arymaptfv 48644* | The value of the mapping of binary (endo)functions. (Contributed by AV, 21-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝐹 ∈ (2-aryF 𝑋) → (𝐻‘𝐹) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝐹‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) | ||
| Theorem | 2arymaptf 48645* | The mapping of binary (endo)functions is a function into the set of binary operations. (Contributed by AV, 21-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)⟶(𝑋 ↑m (𝑋 × 𝑋))) | ||
| Theorem | 2arymaptf1 48646* | The mapping of binary (endo)functions is a one-to-one function into the set of binary operations. (Contributed by AV, 22-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–1-1→(𝑋 ↑m (𝑋 × 𝑋))) | ||
| Theorem | 2arymaptfo 48647* | The mapping of binary (endo)functions is a function onto the set of binary operations. (Contributed by AV, 23-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–onto→(𝑋 ↑m (𝑋 × 𝑋))) | ||
| Theorem | 2arymaptf1o 48648* | The mapping of binary (endo)functions is a one-to-one function onto the set of binary operations. (Contributed by AV, 23-May-2024.) |
| ⊢ 𝐻 = (ℎ ∈ (2-aryF 𝑋) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (ℎ‘{〈0, 𝑥〉, 〈1, 𝑦〉}))) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐻:(2-aryF 𝑋)–1-1-onto→(𝑋 ↑m (𝑋 × 𝑋))) | ||
| Theorem | 2aryenef 48649 | The set of binary (endo)functions and the set of binary operations are equinumerous. (Contributed by AV, 19-May-2024.) |
| ⊢ (2-aryF 𝑋) ≈ (𝑋 ↑m (𝑋 × 𝑋)) | ||
According to Wikipedia ("Ackermann function", 8-May-2024, https://en.wikipedia.org/wiki/Ackermann_function): "In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. ... One common version is the two-argument Ackermann-Péter function developed by Rózsa Péter and Raphael Robinson. Its value grows very rapidly; for example, A(4,2) results in 2^65536-3 [see ackval42 48689)], an integer of 19,729 decimal digits." In the following, the Ackermann function is defined as iterated 1-ary function (also mentioned in Wikipedia), see df-ack 48653, based on a definition IterComp of "the n-th iterate of (a class/function) f", see df-itco 48652. As an illustration, we have ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹 ∘ 𝐹))) (see itcoval3 48658). The following recursive definition of the Ackermann function follows immediately from Definition df-ack 48653: ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)). That Definition df-ack 48653 is equivalent to Péter's definition is proven by the following three theorems: ackval0val 48679: ((Ack‘0)‘𝑀) = (𝑀 + 1); ackvalsuc0val 48680: ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1); ackvalsucsucval 48681: ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁)). The initial values of the Ackermann function are calculated in the following four theorems: ackval0012 48682: 𝐴(0, 0) = 1, 𝐴(0, 1) = 2, 𝐴(0, 2) = 3; ackval1012 48683: 𝐴(1, 0) = 2, 𝐴(1, 1) = 3, 𝐴(1, 3) = 4; ackval2012 48684: 𝐴(2, 0) = 3, 𝐴(2, 1) = 5, 𝐴(2, 3) = 7; ackval3012 48685: 𝐴(3, 0) = 5, 𝐴(3, 1) = ;13, 𝐴(3, 3) = ;29. | ||
| Syntax | citco 48650 | Extend the definition of a class to include iterated functions. |
| class IterComp | ||
| Syntax | cack 48651 | Extend the definition of a class to include the Ackermann function operator. |
| class Ack | ||
| Definition | df-itco 48652* | Define a function (recursively) that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 2-May-2024.) |
| ⊢ IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) | ||
| Definition | df-ack 48653* | Define the Ackermann function (recursively). (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 2-May-2024.) |
| ⊢ Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) | ||
| Theorem | itcoval 48654* | The value of the function that returns the n-th iterate of a class (usually a function) with regard to composition. (Contributed by AV, 2-May-2024.) |
| ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | ||
| Theorem | itcoval0 48655 | A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024.) |
| ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹)) | ||
| Theorem | itcoval1 48656 | A function iterated once. (Contributed by AV, 2-May-2024.) |
| ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘1) = 𝐹) | ||
| Theorem | itcoval2 48657 | A function iterated twice. (Contributed by AV, 2-May-2024.) |
| ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) | ||
| Theorem | itcoval3 48658 | A function iterated three times. (Contributed by AV, 2-May-2024.) |
| ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹 ∘ 𝐹))) | ||
| Theorem | itcoval0mpt 48659* | A mapping iterated zero times (defined as identity function). (Contributed by AV, 4-May-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ 𝑊) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ 𝐴 ↦ 𝑛)) | ||
| Theorem | itcovalsuc 48660* | The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹)) | ||
| Theorem | itcovalsucov 48661 | The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐹 ∘ 𝐺)) | ||
| Theorem | itcovalendof 48662 | The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((IterComp‘𝐹)‘𝑁):𝐴⟶𝐴) | ||
| Theorem | itcovalpclem1 48663* | Lemma 1 for itcovalpc 48665: induction basis. (Contributed by AV, 4-May-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) ⇒ ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) | ||
| Theorem | itcovalpclem2 48664* | Lemma 2 for itcovalpc 48665: induction step. (Contributed by AV, 4-May-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) ⇒ ⊢ ((𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))) | ||
| Theorem | itcovalpc 48665* | The value of the function that returns the n-th iterate of the "plus a constant" function with regard to composition. (Contributed by AV, 4-May-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) ⇒ ⊢ ((𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) | ||
| Theorem | itcovalt2lem2lem1 48666 | Lemma 1 for itcovalt2lem2 48669. (Contributed by AV, 6-May-2024.) |
| ⊢ (((𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → (((𝑁 + 𝐶) · 𝑌) − 𝐶) ∈ ℕ0) | ||
| Theorem | itcovalt2lem2lem2 48667 | Lemma 2 for itcovalt2lem2 48669. (Contributed by AV, 7-May-2024.) |
| ⊢ (((𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ 𝑁 ∈ ℕ0) → ((2 · (((𝑁 + 𝐶) · (2↑𝑌)) − 𝐶)) + 𝐶) = (((𝑁 + 𝐶) · (2↑(𝑌 + 1))) − 𝐶)) | ||
| Theorem | itcovalt2lem1 48668* | Lemma 1 for itcovalt2 48670: induction basis. (Contributed by AV, 5-May-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) ⇒ ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) | ||
| Theorem | itcovalt2lem2 48669* | Lemma 2 for itcovalt2 48670: induction step. (Contributed by AV, 7-May-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) ⇒ ⊢ ((𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))) | ||
| Theorem | itcovalt2 48670* | The value of the function that returns the n-th iterate of the "times 2 plus a constant" function with regard to composition. (Contributed by AV, 7-May-2024.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) ⇒ ⊢ ((𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))) | ||
| Theorem | ackvalsuc1mpt 48671* | The Ackermann function at a successor of the first argument as a mapping of the second argument. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 4-May-2024.) |
| ⊢ (𝑀 ∈ ℕ0 → (Ack‘(𝑀 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘𝑀))‘(𝑛 + 1))‘1))) | ||
| Theorem | ackvalsuc1 48672 | The Ackermann function at a successor of the first argument and an arbitrary second argument. (Contributed by Thierry Arnoux, 28-Apr-2024.) (Revised by AV, 4-May-2024.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘𝑁) = (((IterComp‘(Ack‘𝑀))‘(𝑁 + 1))‘1)) | ||
| Theorem | ackval0 48673 | The Ackermann function at 0. (Contributed by AV, 2-May-2024.) |
| ⊢ (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) | ||
| Theorem | ackval1 48674 | The Ackermann function at 1. (Contributed by AV, 4-May-2024.) |
| ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) | ||
| Theorem | ackval2 48675 | The Ackermann function at 2. (Contributed by AV, 4-May-2024.) |
| ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | ||
| Theorem | ackval3 48676 | The Ackermann function at 3. (Contributed by AV, 7-May-2024.) |
| ⊢ (Ack‘3) = (𝑛 ∈ ℕ0 ↦ ((2↑(𝑛 + 3)) − 3)) | ||
| Theorem | ackendofnn0 48677 | The Ackermann function at any nonnegative integer is an endofunction on the nonnegative integers. (Contributed by AV, 8-May-2024.) |
| ⊢ (𝑀 ∈ ℕ0 → (Ack‘𝑀):ℕ0⟶ℕ0) | ||
| Theorem | ackfnnn0 48678 | The Ackermann function at any nonnegative integer is a function on the nonnegative integers. (Contributed by AV, 4-May-2024.) (Proof shortened by AV, 8-May-2024.) |
| ⊢ (𝑀 ∈ ℕ0 → (Ack‘𝑀) Fn ℕ0) | ||
| Theorem | ackval0val 48679 | The Ackermann function at 0 (for the first argument). This is the first equation of Péter's definition of the Ackermann function. (Contributed by AV, 4-May-2024.) |
| ⊢ (𝑀 ∈ ℕ0 → ((Ack‘0)‘𝑀) = (𝑀 + 1)) | ||
| Theorem | ackvalsuc0val 48680 | The Ackermann function at a successor (of the first argument). This is the second equation of Péter's definition of the Ackermann function. (Contributed by AV, 4-May-2024.) |
| ⊢ (𝑀 ∈ ℕ0 → ((Ack‘(𝑀 + 1))‘0) = ((Ack‘𝑀)‘1)) | ||
| Theorem | ackvalsucsucval 48681 | The Ackermann function at the successors. This is the third equation of Péter's definition of the Ackermann function. (Contributed by AV, 8-May-2024.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((Ack‘(𝑀 + 1))‘(𝑁 + 1)) = ((Ack‘𝑀)‘((Ack‘(𝑀 + 1))‘𝑁))) | ||
| Theorem | ackval0012 48682 | The Ackermann function at (0,0), (0,1), (0,2). (Contributed by AV, 2-May-2024.) |
| ⊢ 〈((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)〉 = 〈1, 2, 3〉 | ||
| Theorem | ackval1012 48683 | The Ackermann function at (1,0), (1,1), (1,2). (Contributed by AV, 4-May-2024.) |
| ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 | ||
| Theorem | ackval2012 48684 | The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
| ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 | ||
| Theorem | ackval3012 48685 | The Ackermann function at (3,0), (3,1), (3,2). (Contributed by AV, 7-May-2024.) |
| ⊢ 〈((Ack‘3)‘0), ((Ack‘3)‘1), ((Ack‘3)‘2)〉 = 〈5, ;13, ;29〉 | ||
| Theorem | ackval40 48686 | The Ackermann function at (4,0). (Contributed by AV, 9-May-2024.) |
| ⊢ ((Ack‘4)‘0) = ;13 | ||
| Theorem | ackval41a 48687 | The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
| ⊢ ((Ack‘4)‘1) = ((2↑;16) − 3) | ||
| Theorem | ackval41 48688 | The Ackermann function at (4,1). (Contributed by AV, 9-May-2024.) |
| ⊢ ((Ack‘4)‘1) = ;;;;65533 | ||
| Theorem | ackval42 48689 | The Ackermann function at (4,2). (Contributed by AV, 9-May-2024.) |
| ⊢ ((Ack‘4)‘2) = ((2↑;;;;65536) − 3) | ||
| Theorem | ackval42a 48690 | The Ackermann function at (4,2), expressed with powers of 2. (Contributed by AV, 9-May-2024.) |
| ⊢ ((Ack‘4)‘2) = ((2↑(2↑(2↑(2↑2)))) − 3) | ||
| Theorem | ackval50 48691 | The Ackermann function at (5,0). (Contributed by AV, 9-May-2024.) |
| ⊢ ((Ack‘5)‘0) = ;;;;65533 | ||
| Theorem | fv1prop 48692 | The function value of unordered pair of ordered pairs with first components 1 and 2 at 1. (Contributed by AV, 4-Feb-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → ({〈1, 𝐴〉, 〈2, 𝐵〉}‘1) = 𝐴) | ||
| Theorem | fv2prop 48693 | The function value of unordered pair of ordered pairs with first components 1 and 2 at 1. (Contributed by AV, 4-Feb-2023.) |
| ⊢ (𝐵 ∈ 𝑉 → ({〈1, 𝐴〉, 〈2, 𝐵〉}‘2) = 𝐵) | ||
| Theorem | submuladdmuld 48694 | Transformation of a sum of a product of a difference and a product with the subtrahend of the difference. (Contributed by AV, 2-Feb-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐵) · 𝐶) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + (𝐵 · (𝐷 − 𝐶)))) | ||
| Theorem | affinecomb1 48695* | Combination of two real affine combinations, one class variable resolved. (Contributed by AV, 22-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ℝ) & ⊢ (𝜑 → 𝐺 ∈ ℝ) & ⊢ 𝑆 = ((𝐺 − 𝐹) / (𝐶 − 𝐵)) ⇒ ⊢ (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ 𝐸 = ((𝑆 · (𝐴 − 𝐵)) + 𝐹))) | ||
| Theorem | affinecomb2 48696* | Combination of two real affine combinations, presented without fraction. (Contributed by AV, 22-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ℝ) & ⊢ (𝜑 → 𝐺 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑡 ∈ ℝ (𝐴 = (((1 − 𝑡) · 𝐵) + (𝑡 · 𝐶)) ∧ 𝐸 = (((1 − 𝑡) · 𝐹) + (𝑡 · 𝐺))) ↔ ((𝐶 − 𝐵) · 𝐸) = (((𝐺 − 𝐹) · 𝐴) + ((𝐹 · 𝐶) − (𝐵 · 𝐺))))) | ||
| Theorem | affineid 48697 | Identity of an affine combination. (Contributed by AV, 2-Feb-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) ⇒ ⊢ (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐴)) = 𝐴) | ||
| Theorem | 1subrec1sub 48698 | Subtract the reciprocal of 1 minus a number from 1 results in the number divided by the number minus 1. (Contributed by AV, 15-Feb-2023.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 1) → (1 − (1 / (1 − 𝐴))) = (𝐴 / (𝐴 − 1))) | ||
| Theorem | resum2sqcl 48699 | The sum of two squares of real numbers is a real number. (Contributed by AV, 7-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ) | ||
| Theorem | resum2sqgt0 48700 | The sum of the square of a nonzero real number and the square of another real number is greater than zero. (Contributed by AV, 7-Feb-2023.) |
| ⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |