| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunssd | Structured version Visualization version GIF version | ||
| Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| iunssd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| iunssd | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunssd.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 3 | iunss 5004 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: imasaddfnlem 17467 imasaddflem 17469 subdrgint 20723 bdayiun 27864 precsexlem10 28158 gsumwrd2dccatlem 33049 constrsscn 33723 oacl2g 43312 omcl2 43315 ofoaf 43337 onsucunifi 43352 meaiininclem 46477 smflim 46768 smfresal 46779 smfmullem4 46785 iunlub 48802 |
| Copyright terms: Public domain | W3C validator |