MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunssd Structured version   Visualization version   GIF version

Theorem iunssd 4976
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
iunssd.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
iunssd (𝜑 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iunssd
StepHypRef Expression
1 iunssd.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21ralrimiva 3107 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 iunss 4971 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
42, 3sylibr 233 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  wss 3883   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-iun 4923
This theorem is referenced by:  imasaddfnlem  17156  imasaddflem  17158  subdrgint  19986  meaiininclem  43914  smflim  44199  smfresal  44209  smfmullem4  44215
  Copyright terms: Public domain W3C validator