MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunssd Structured version   Visualization version   GIF version

Theorem iunssd 5009
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
iunssd.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
iunssd (𝜑 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem iunssd
StepHypRef Expression
1 iunssd.1 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
21ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 iunss 5004 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
42, 3sylibr 234 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wss 3911   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-ss 3928  df-iun 4953
This theorem is referenced by:  imasaddfnlem  17468  imasaddflem  17470  subdrgint  20724  bdayiun  27865  precsexlem10  28159  gsumwrd2dccatlem  33050  constrsscn  33724  oacl2g  43313  omcl2  43316  ofoaf  43338  onsucunifi  43353  meaiininclem  46478  smflim  46769  smfresal  46780  smfmullem4  46786  iunlub  48803
  Copyright terms: Public domain W3C validator