| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunssd | Structured version Visualization version GIF version | ||
| Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| iunssd.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| iunssd | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunssd.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 3 | iunss 5011 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 ∪ ciun 4957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-ss 3933 df-iun 4959 |
| This theorem is referenced by: imasaddfnlem 17497 imasaddflem 17499 subdrgint 20718 precsexlem10 28124 gsumwrd2dccatlem 33012 constrsscn 33736 oacl2g 43312 omcl2 43315 ofoaf 43337 onsucunifi 43352 meaiininclem 46477 smflim 46768 smfresal 46779 smfmullem4 46785 iunlub 48799 |
| Copyright terms: Public domain | W3C validator |