Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinglb Structured version   Visualization version   GIF version

Theorem iinglb 48800
Description: The indexed intersection is the the greatest lower bound if it exists. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
iunlub.1 (𝜑𝑋𝐴)
iunlub.2 ((𝜑𝑥 = 𝑋) → 𝐵 = 𝐶)
iinglb.3 ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
iinglb (𝜑 𝑥𝐴 𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinglb
StepHypRef Expression
1 iunlub.1 . . . 4 (𝜑𝑋𝐴)
2 iunlub.2 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝐵 = 𝐶)
32sseq1d 3980 . . . 4 ((𝜑𝑥 = 𝑋) → (𝐵𝐶𝐶𝐶))
4 ssidd 3972 . . . 4 (𝜑𝐶𝐶)
51, 3, 4rspcedvd 3593 . . 3 (𝜑 → ∃𝑥𝐴 𝐵𝐶)
6 iinss 5022 . . 3 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
75, 6syl 17 . 2 (𝜑 𝑥𝐴 𝐵𝐶)
8 iinglb.3 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
98ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
10 ssiin 5021 . . 3 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
119, 10sylibr 234 . 2 (𝜑𝐶 𝑥𝐴 𝐵)
127, 11eqssd 3966 1 (𝜑 𝑥𝐴 𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3916   ciin 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-v 3452  df-ss 3933  df-iin 4960
This theorem is referenced by:  iinfconstbas  49045
  Copyright terms: Public domain W3C validator