![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5968 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 5232 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2763 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5951 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2807 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2773 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ∃wrex 3068 {copab 5210 ↦ cmpt 5231 ran crn 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: elrnmpt 5972 elrnmpt1 5974 elrnmptg 5975 dfiun3g 5981 dfiin3g 5982 fnrnfv 6968 fmpt 7130 fnasrn 7165 fliftf 7335 abrexexgOLD 7985 fo1st 8033 fo2nd 8034 fsplitfpar 8142 qliftf 8844 abrexfi 9390 iinfi 9455 tz9.12lem1 9825 infmap2 10255 cfslb2n 10306 fin23lem29 10379 fin23lem30 10380 fin1a2lem11 10448 ac6num 10517 rankcf 10815 tskuni 10821 negfi 12215 4sqlem11 16989 4sqlem12 16990 vdwapval 17007 vdwlem6 17020 quslem 17590 smndex2dnrinv 18941 conjnmzb 19284 pmtrprfvalrn 19521 sylow1lem2 19632 sylow3lem1 19660 sylow3lem2 19661 ablsimpgfind 20145 pzriprnglem10 21519 ellspd 21840 rnascl 21929 iinopn 22924 restco 23188 pnrmopn 23367 cncmp 23416 discmp 23422 comppfsc 23556 alexsublem 24068 ptcmplem3 24078 snclseqg 24140 prdsxmetlem 24394 prdsbl 24520 xrhmeo 24991 pi1xfrf 25100 pi1cof 25106 iunmbl 25602 voliun 25603 itg1addlem4 25748 itg1addlem4OLD 25749 i1fmulc 25753 mbfi1fseqlem4 25768 itg2monolem1 25800 aannenlem2 26386 2lgslem1b 27451 bdayfo 27737 nosupno 27763 noinfno 27778 addsuniflem 28049 mptelee 28925 disjrnmpt 32605 ofrn2 32657 abrexct 32734 abrexctf 32736 qusbas2 33414 nsgqusf1olem2 33422 esumc 34032 esumrnmpt 34033 carsgclctunlem3 34302 eulerpartlemt 34353 fobigcup 35882 ptrest 37606 areacirclem2 37696 istotbnd3 37758 sstotbnd 37762 dfqs2 42257 rnasclg 42486 rmxypairf1o 42900 hbtlem6 43118 onsucrn 43261 elrnmptf 45124 fnrnafv 47112 fundcmpsurinjlem1 47323 imasetpreimafvbijlemfo 47330 fargshiftfo 47367 |
Copyright terms: Public domain | W3C validator |