![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5952 | . 2 ⊢ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 5232 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2761 | . . 3 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5935 | . 2 ⊢ ran 𝐹 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3072 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2803 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2771 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3071 {copab 5210 ↦ cmpt 5231 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: elrnmpt 5954 elrnmpt1 5956 elrnmptg 5957 dfiun3g 5962 dfiin3g 5963 fnrnfv 6949 fmpt 7107 fnasrn 7140 fliftf 7309 abrexexgOLD 7945 fo1st 7992 fo2nd 7993 fsplitfpar 8101 qliftf 8796 abrexfi 9349 iinfi 9409 tz9.12lem1 9779 infmap2 10210 cfslb2n 10260 fin23lem29 10333 fin23lem30 10334 fin1a2lem11 10402 ac6num 10471 rankcf 10769 tskuni 10775 negfi 12160 4sqlem11 16885 4sqlem12 16886 vdwapval 16903 vdwlem6 16916 quslem 17486 smndex2dnrinv 18793 conjnmzb 19122 pmtrprfvalrn 19351 sylow1lem2 19462 sylow3lem1 19490 sylow3lem2 19491 ablsimpgfind 19975 ellspd 21349 rnascl 21437 iinopn 22396 restco 22660 pnrmopn 22839 cncmp 22888 discmp 22894 comppfsc 23028 alexsublem 23540 ptcmplem3 23550 snclseqg 23612 prdsxmetlem 23866 prdsbl 23992 xrhmeo 24454 pi1xfrf 24561 pi1cof 24567 iunmbl 25062 voliun 25063 itg1addlem4 25208 itg1addlem4OLD 25209 i1fmulc 25213 mbfi1fseqlem4 25228 itg2monolem1 25260 aannenlem2 25834 2lgslem1b 26885 bdayfo 27170 nosupno 27196 noinfno 27211 addsuniflem 27474 mptelee 28143 disjrnmpt 31804 ofrn2 31853 abrexct 31929 abrexctf 31931 qusbas2 32506 nsgqusf1olem2 32514 esumc 33038 esumrnmpt 33039 carsgclctunlem3 33308 eulerpartlemt 33359 fobigcup 34861 ptrest 36476 areacirclem2 36566 istotbnd3 36628 sstotbnd 36632 dfqs2 41057 rnasclg 41071 rmxypairf1o 41636 hbtlem6 41857 onsucrn 42007 elrnmptf 43864 fnrnafv 45857 fundcmpsurinjlem1 46053 imasetpreimafvbijlemfo 46060 fargshiftfo 46097 |
Copyright terms: Public domain | W3C validator |