![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5954 | . 2 ⊢ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 5233 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2761 | . . 3 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5937 | . 2 ⊢ ran 𝐹 = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3072 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2803 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2771 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3071 {copab 5211 ↦ cmpt 5232 ran crn 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-mpt 5233 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: elrnmpt 5956 elrnmpt1 5958 elrnmptg 5959 dfiun3g 5964 dfiin3g 5965 fnrnfv 6952 fmpt 7110 fnasrn 7143 fliftf 7312 abrexexgOLD 7948 fo1st 7995 fo2nd 7996 fsplitfpar 8104 qliftf 8799 abrexfi 9352 iinfi 9412 tz9.12lem1 9782 infmap2 10213 cfslb2n 10263 fin23lem29 10336 fin23lem30 10337 fin1a2lem11 10405 ac6num 10474 rankcf 10772 tskuni 10778 negfi 12163 4sqlem11 16888 4sqlem12 16889 vdwapval 16906 vdwlem6 16919 quslem 17489 smndex2dnrinv 18796 conjnmzb 19127 pmtrprfvalrn 19356 sylow1lem2 19467 sylow3lem1 19495 sylow3lem2 19496 ablsimpgfind 19980 ellspd 21357 rnascl 21445 iinopn 22404 restco 22668 pnrmopn 22847 cncmp 22896 discmp 22902 comppfsc 23036 alexsublem 23548 ptcmplem3 23558 snclseqg 23620 prdsxmetlem 23874 prdsbl 24000 xrhmeo 24462 pi1xfrf 24569 pi1cof 24575 iunmbl 25070 voliun 25071 itg1addlem4 25216 itg1addlem4OLD 25217 i1fmulc 25221 mbfi1fseqlem4 25236 itg2monolem1 25268 aannenlem2 25842 2lgslem1b 26895 bdayfo 27180 nosupno 27206 noinfno 27221 addsuniflem 27484 mptelee 28153 disjrnmpt 31816 ofrn2 31865 abrexct 31941 abrexctf 31943 qusbas2 32517 nsgqusf1olem2 32525 esumc 33049 esumrnmpt 33050 carsgclctunlem3 33319 eulerpartlemt 33370 fobigcup 34872 ptrest 36487 areacirclem2 36577 istotbnd3 36639 sstotbnd 36643 dfqs2 41059 rnasclg 41073 rmxypairf1o 41650 hbtlem6 41871 onsucrn 42021 elrnmptf 43878 fnrnafv 45870 fundcmpsurinjlem1 46066 imasetpreimafvbijlemfo 46073 fargshiftfo 46110 pzriprnglem10 46814 |
Copyright terms: Public domain | W3C validator |