| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab 5907 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | df-mpt 5184 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 4 | 2, 3 | eqtri 2752 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | 4 | rneqi 5890 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 6 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
| 7 | 6 | abbii 2796 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 8 | 1, 5, 7 | 3eqtr4i 2762 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {copab 5164 ↦ cmpt 5183 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: elrnmpt 5911 elrnmpt1 5913 elrnmptg 5914 dfiun3g 5920 dfiin3g 5921 fnrnfv 6902 fmpt 7064 fnasrn 7099 fliftf 7272 fo1st 7967 fo2nd 7968 fsplitfpar 8074 qliftf 8755 abrexfi 9279 iinfi 9344 tz9.12lem1 9716 infmap2 10146 cfslb2n 10197 fin23lem29 10270 fin23lem30 10271 fin1a2lem11 10339 ac6num 10408 rankcf 10706 tskuni 10712 negfi 12108 4sqlem11 16902 4sqlem12 16903 vdwapval 16920 vdwlem6 16933 quslem 17482 smndex2dnrinv 18818 conjnmzb 19161 pmtrprfvalrn 19394 sylow1lem2 19505 sylow3lem1 19533 sylow3lem2 19534 ablsimpgfind 20018 pzriprnglem10 21376 ellspd 21687 rnascl 21776 iinopn 22765 restco 23027 pnrmopn 23206 cncmp 23255 discmp 23261 comppfsc 23395 alexsublem 23907 ptcmplem3 23917 snclseqg 23979 prdsxmetlem 24232 prdsbl 24355 xrhmeo 24820 pi1xfrf 24929 pi1cof 24935 iunmbl 25430 voliun 25431 itg1addlem4 25576 i1fmulc 25580 mbfi1fseqlem4 25595 itg2monolem1 25627 aannenlem2 26213 2lgslem1b 27279 bdayfo 27565 nosupno 27591 noinfno 27606 addsuniflem 27884 mptelee 28798 disjrnmpt 32487 ofrn2 32537 abrexct 32613 abrexctf 32615 qusbas2 33350 nsgqusf1olem2 33358 esumc 34014 esumrnmpt 34015 carsgclctunlem3 34284 eulerpartlemt 34335 fobigcup 35861 ptrest 37586 areacirclem2 37676 istotbnd3 37738 sstotbnd 37742 dfqs2 42198 rnasclg 42460 rmxypairf1o 42873 hbtlem6 43091 onsucrn 43233 elrnmptf 45148 fnrnafv 47136 fundcmpsurinjlem1 47372 imasetpreimafvbijlemfo 47379 fargshiftfo 47416 |
| Copyright terms: Public domain | W3C validator |