![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5979 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 5250 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2768 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5962 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2812 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2778 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∃wrex 3076 {copab 5228 ↦ cmpt 5249 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: elrnmpt 5981 elrnmpt1 5983 elrnmptg 5984 dfiun3g 5990 dfiin3g 5991 fnrnfv 6981 fmpt 7144 fnasrn 7179 fliftf 7351 abrexexgOLD 8002 fo1st 8050 fo2nd 8051 fsplitfpar 8159 qliftf 8863 abrexfi 9422 iinfi 9486 tz9.12lem1 9856 infmap2 10286 cfslb2n 10337 fin23lem29 10410 fin23lem30 10411 fin1a2lem11 10479 ac6num 10548 rankcf 10846 tskuni 10852 negfi 12244 4sqlem11 17002 4sqlem12 17003 vdwapval 17020 vdwlem6 17033 quslem 17603 smndex2dnrinv 18950 conjnmzb 19293 pmtrprfvalrn 19530 sylow1lem2 19641 sylow3lem1 19669 sylow3lem2 19670 ablsimpgfind 20154 pzriprnglem10 21524 ellspd 21845 rnascl 21934 iinopn 22929 restco 23193 pnrmopn 23372 cncmp 23421 discmp 23427 comppfsc 23561 alexsublem 24073 ptcmplem3 24083 snclseqg 24145 prdsxmetlem 24399 prdsbl 24525 xrhmeo 24996 pi1xfrf 25105 pi1cof 25111 iunmbl 25607 voliun 25608 itg1addlem4 25753 itg1addlem4OLD 25754 i1fmulc 25758 mbfi1fseqlem4 25773 itg2monolem1 25805 aannenlem2 26389 2lgslem1b 27454 bdayfo 27740 nosupno 27766 noinfno 27781 addsuniflem 28052 mptelee 28928 disjrnmpt 32607 ofrn2 32659 abrexct 32730 abrexctf 32732 qusbas2 33399 nsgqusf1olem2 33407 esumc 34015 esumrnmpt 34016 carsgclctunlem3 34285 eulerpartlemt 34336 fobigcup 35864 ptrest 37579 areacirclem2 37669 istotbnd3 37731 sstotbnd 37735 dfqs2 42232 rnasclg 42454 rmxypairf1o 42868 hbtlem6 43086 onsucrn 43233 elrnmptf 45088 fnrnafv 47077 fundcmpsurinjlem1 47272 imasetpreimafvbijlemfo 47279 fargshiftfo 47316 |
Copyright terms: Public domain | W3C validator |