| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab 5896 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | df-mpt 5174 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 4 | 2, 3 | eqtri 2752 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | 4 | rneqi 5879 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 6 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
| 7 | 6 | abbii 2796 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 8 | 1, 5, 7 | 3eqtr4i 2762 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {copab 5154 ↦ cmpt 5173 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: elrnmpt 5900 elrnmpt1 5902 elrnmptg 5903 dfiun3g 5909 dfiin3g 5910 fnrnfv 6882 fmpt 7044 fnasrn 7079 fliftf 7252 fo1st 7944 fo2nd 7945 fsplitfpar 8051 qliftf 8732 abrexfi 9242 iinfi 9307 tz9.12lem1 9683 infmap2 10111 cfslb2n 10162 fin23lem29 10235 fin23lem30 10236 fin1a2lem11 10304 ac6num 10373 rankcf 10671 tskuni 10677 negfi 12074 4sqlem11 16867 4sqlem12 16868 vdwapval 16885 vdwlem6 16898 quslem 17447 smndex2dnrinv 18789 conjnmzb 19132 pmtrprfvalrn 19367 sylow1lem2 19478 sylow3lem1 19506 sylow3lem2 19507 ablsimpgfind 19991 pzriprnglem10 21397 ellspd 21709 rnascl 21798 iinopn 22787 restco 23049 pnrmopn 23228 cncmp 23277 discmp 23283 comppfsc 23417 alexsublem 23929 ptcmplem3 23939 snclseqg 24001 prdsxmetlem 24254 prdsbl 24377 xrhmeo 24842 pi1xfrf 24951 pi1cof 24957 iunmbl 25452 voliun 25453 itg1addlem4 25598 i1fmulc 25602 mbfi1fseqlem4 25617 itg2monolem1 25649 aannenlem2 26235 2lgslem1b 27301 bdayfo 27587 nosupno 27613 noinfno 27628 addsuniflem 27913 mptelee 28840 disjrnmpt 32529 ofrn2 32583 abrexct 32659 abrexctf 32661 qusbas2 33343 nsgqusf1olem2 33351 esumc 34018 esumrnmpt 34019 carsgclctunlem3 34288 eulerpartlemt 34339 fobigcup 35874 ptrest 37599 areacirclem2 37689 istotbnd3 37751 sstotbnd 37755 dfqs2 42210 rnasclg 42472 rmxypairf1o 42884 hbtlem6 43102 onsucrn 43244 elrnmptf 45159 fnrnafv 47146 fundcmpsurinjlem1 47382 imasetpreimafvbijlemfo 47389 fargshiftfo 47426 |
| Copyright terms: Public domain | W3C validator |