![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5669 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 5009 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2802 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5650 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3094 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2844 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2812 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2050 {cab 2758 ∃wrex 3089 {copab 4991 ↦ cmpt 5008 ran crn 5408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-opab 4992 df-mpt 5009 df-cnv 5415 df-dm 5417 df-rn 5418 |
This theorem is referenced by: elrnmpt 5671 elrnmpt1 5673 elrnmptg 5674 dfiun3g 5677 dfiin3g 5678 fnrnfv 6555 fmpt 6697 fnasrn 6730 fliftf 6891 abrexexg 7474 fo1st 7521 fo2nd 7522 qliftf 8185 abrexfi 8619 iinfi 8676 tz9.12lem1 9010 infmap2 9438 cfslb2n 9488 fin23lem29 9561 fin23lem30 9562 fin1a2lem11 9630 ac6num 9699 rankcf 9997 tskuni 10003 negfi 11390 4sqlem11 16147 4sqlem12 16148 vdwapval 16165 vdwlem6 16178 quslem 16672 conjnmzb 18164 pmtrprfvalrn 18377 sylow1lem2 18485 sylow3lem1 18513 sylow3lem2 18514 rnascl 19837 ellspd 20648 iinopn 21214 restco 21476 pnrmopn 21655 cncmp 21704 discmp 21710 comppfsc 21844 alexsublem 22356 ptcmplem3 22366 snclseqg 22427 prdsxmetlem 22681 prdsbl 22804 xrhmeo 23253 pi1xfrf 23360 pi1cof 23366 iunmbl 23857 voliun 23858 itg1addlem4 24003 i1fmulc 24007 mbfi1fseqlem4 24022 itg2monolem1 24054 aannenlem2 24621 2lgslem1b 25670 mptelee 26384 disjrnmpt 30101 ofrn2 30149 abrexct 30211 abrexctf 30213 esumc 30960 esumrnmpt 30961 carsgclctunlem3 31229 eulerpartlemt 31280 bdayfo 32709 nosupno 32730 fobigcup 32888 ptrest 34338 areacirclem2 34430 istotbnd3 34497 sstotbnd 34501 dfqs2 38573 rmxypairf1o 38910 hbtlem6 39131 ablsimpgfind 40051 elrnmptf 40871 fnrnafv 42773 fargshiftfo 42980 |
Copyright terms: Public domain | W3C validator |