| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab 5921 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | df-mpt 5192 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 4 | 2, 3 | eqtri 2753 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | 4 | rneqi 5904 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 6 | df-rex 3055 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
| 7 | 6 | abbii 2797 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 8 | 1, 5, 7 | 3eqtr4i 2763 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ∃wrex 3054 {copab 5172 ↦ cmpt 5191 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: elrnmpt 5925 elrnmpt1 5927 elrnmptg 5928 dfiun3g 5934 dfiin3g 5935 fnrnfv 6923 fmpt 7085 fnasrn 7120 fliftf 7293 abrexexgOLD 7943 fo1st 7991 fo2nd 7992 fsplitfpar 8100 qliftf 8781 abrexfi 9310 iinfi 9375 tz9.12lem1 9747 infmap2 10177 cfslb2n 10228 fin23lem29 10301 fin23lem30 10302 fin1a2lem11 10370 ac6num 10439 rankcf 10737 tskuni 10743 negfi 12139 4sqlem11 16933 4sqlem12 16934 vdwapval 16951 vdwlem6 16964 quslem 17513 smndex2dnrinv 18849 conjnmzb 19192 pmtrprfvalrn 19425 sylow1lem2 19536 sylow3lem1 19564 sylow3lem2 19565 ablsimpgfind 20049 pzriprnglem10 21407 ellspd 21718 rnascl 21807 iinopn 22796 restco 23058 pnrmopn 23237 cncmp 23286 discmp 23292 comppfsc 23426 alexsublem 23938 ptcmplem3 23948 snclseqg 24010 prdsxmetlem 24263 prdsbl 24386 xrhmeo 24851 pi1xfrf 24960 pi1cof 24966 iunmbl 25461 voliun 25462 itg1addlem4 25607 i1fmulc 25611 mbfi1fseqlem4 25626 itg2monolem1 25658 aannenlem2 26244 2lgslem1b 27310 bdayfo 27596 nosupno 27622 noinfno 27637 addsuniflem 27915 mptelee 28829 disjrnmpt 32521 ofrn2 32571 abrexct 32647 abrexctf 32649 qusbas2 33384 nsgqusf1olem2 33392 esumc 34048 esumrnmpt 34049 carsgclctunlem3 34318 eulerpartlemt 34369 fobigcup 35895 ptrest 37620 areacirclem2 37710 istotbnd3 37772 sstotbnd 37776 dfqs2 42232 rnasclg 42494 rmxypairf1o 42907 hbtlem6 43125 onsucrn 43267 elrnmptf 45182 fnrnafv 47167 fundcmpsurinjlem1 47403 imasetpreimafvbijlemfo 47410 fargshiftfo 47447 |
| Copyright terms: Public domain | W3C validator |