| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab 5939 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | df-mpt 5207 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 4 | 2, 3 | eqtri 2759 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | 4 | rneqi 5922 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 6 | df-rex 3062 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
| 7 | 6 | abbii 2803 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 8 | 1, 5, 7 | 3eqtr4i 2769 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∃wrex 3061 {copab 5186 ↦ cmpt 5206 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: elrnmpt 5943 elrnmpt1 5945 elrnmptg 5946 dfiun3g 5952 dfiin3g 5953 fnrnfv 6943 fmpt 7105 fnasrn 7140 fliftf 7313 abrexexgOLD 7965 fo1st 8013 fo2nd 8014 fsplitfpar 8122 qliftf 8824 abrexfi 9369 iinfi 9434 tz9.12lem1 9806 infmap2 10236 cfslb2n 10287 fin23lem29 10360 fin23lem30 10361 fin1a2lem11 10429 ac6num 10498 rankcf 10796 tskuni 10802 negfi 12196 4sqlem11 16980 4sqlem12 16981 vdwapval 16998 vdwlem6 17011 quslem 17562 smndex2dnrinv 18898 conjnmzb 19241 pmtrprfvalrn 19474 sylow1lem2 19585 sylow3lem1 19613 sylow3lem2 19614 ablsimpgfind 20098 pzriprnglem10 21456 ellspd 21767 rnascl 21856 iinopn 22845 restco 23107 pnrmopn 23286 cncmp 23335 discmp 23341 comppfsc 23475 alexsublem 23987 ptcmplem3 23997 snclseqg 24059 prdsxmetlem 24312 prdsbl 24435 xrhmeo 24900 pi1xfrf 25009 pi1cof 25015 iunmbl 25511 voliun 25512 itg1addlem4 25657 i1fmulc 25661 mbfi1fseqlem4 25676 itg2monolem1 25708 aannenlem2 26294 2lgslem1b 27360 bdayfo 27646 nosupno 27672 noinfno 27687 addsuniflem 27965 mptelee 28879 disjrnmpt 32571 ofrn2 32623 abrexct 32699 abrexctf 32701 qusbas2 33426 nsgqusf1olem2 33434 esumc 34087 esumrnmpt 34088 carsgclctunlem3 34357 eulerpartlemt 34408 fobigcup 35923 ptrest 37648 areacirclem2 37738 istotbnd3 37800 sstotbnd 37804 dfqs2 42255 rnasclg 42489 rmxypairf1o 42902 hbtlem6 43120 onsucrn 43262 elrnmptf 45172 fnrnafv 47158 fundcmpsurinjlem1 47379 imasetpreimafvbijlemfo 47386 fargshiftfo 47423 |
| Copyright terms: Public domain | W3C validator |