Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5860 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 5162 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2767 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5843 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2777 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 ∃wrex 3066 {copab 5140 ↦ cmpt 5161 ran crn 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: elrnmpt 5862 elrnmpt1 5864 elrnmptg 5865 dfiun3g 5870 dfiin3g 5871 fnrnfv 6823 fmpt 6978 fnasrn 7011 fliftf 7179 abrexexg 7790 fo1st 7837 fo2nd 7838 fsplitfpar 7943 qliftf 8568 abrexfi 9080 iinfi 9137 tz9.12lem1 9529 infmap2 9958 cfslb2n 10008 fin23lem29 10081 fin23lem30 10082 fin1a2lem11 10150 ac6num 10219 rankcf 10517 tskuni 10523 negfi 11907 4sqlem11 16637 4sqlem12 16638 vdwapval 16655 vdwlem6 16668 quslem 17235 smndex2dnrinv 18535 conjnmzb 18850 pmtrprfvalrn 19077 sylow1lem2 19185 sylow3lem1 19213 sylow3lem2 19214 ablsimpgfind 19694 ellspd 20990 rnascl 21076 iinopn 22032 restco 22296 pnrmopn 22475 cncmp 22524 discmp 22530 comppfsc 22664 alexsublem 23176 ptcmplem3 23186 snclseqg 23248 prdsxmetlem 23502 prdsbl 23628 xrhmeo 24090 pi1xfrf 24197 pi1cof 24203 iunmbl 24698 voliun 24699 itg1addlem4 24844 itg1addlem4OLD 24845 i1fmulc 24849 mbfi1fseqlem4 24864 itg2monolem1 24896 aannenlem2 25470 2lgslem1b 26521 mptelee 27244 disjrnmpt 30903 ofrn2 30956 abrexct 31030 abrexctf 31032 nsgqusf1olem2 31578 esumc 31998 esumrnmpt 31999 carsgclctunlem3 32266 eulerpartlemt 32317 bdayfo 33859 nosupno 33885 noinfno 33900 fobigcup 34181 ptrest 35755 areacirclem2 35845 istotbnd3 35908 sstotbnd 35912 dfqs2 40192 rnasclg 40203 rmxypairf1o 40713 hbtlem6 40934 elrnmptf 42671 fnrnafv 44605 fundcmpsurinjlem1 44802 imasetpreimafvbijlemfo 44809 fargshiftfo 44846 |
Copyright terms: Public domain | W3C validator |