| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab 5893 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | df-mpt 5171 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 4 | 2, 3 | eqtri 2754 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | 4 | rneqi 5876 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 6 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
| 7 | 6 | abbii 2798 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 8 | 1, 5, 7 | 3eqtr4i 2764 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {copab 5151 ↦ cmpt 5170 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: elrnmpt 5897 elrnmpt1 5899 elrnmptg 5900 dfiun3g 5906 dfiin3g 5907 fnrnfv 6881 fmpt 7043 fnasrn 7078 fliftf 7249 fo1st 7941 fo2nd 7942 fsplitfpar 8048 qliftf 8729 abrexfi 9236 iinfi 9301 tz9.12lem1 9680 infmap2 10108 cfslb2n 10159 fin23lem29 10232 fin23lem30 10233 fin1a2lem11 10301 ac6num 10370 rankcf 10668 tskuni 10674 negfi 12071 4sqlem11 16867 4sqlem12 16868 vdwapval 16885 vdwlem6 16898 quslem 17447 smndex2dnrinv 18823 conjnmzb 19165 pmtrprfvalrn 19400 sylow1lem2 19511 sylow3lem1 19539 sylow3lem2 19540 ablsimpgfind 20024 pzriprnglem10 21427 ellspd 21739 rnascl 21828 iinopn 22817 restco 23079 pnrmopn 23258 cncmp 23307 discmp 23313 comppfsc 23447 alexsublem 23959 ptcmplem3 23969 snclseqg 24031 prdsxmetlem 24283 prdsbl 24406 xrhmeo 24871 pi1xfrf 24980 pi1cof 24986 iunmbl 25481 voliun 25482 itg1addlem4 25627 i1fmulc 25631 mbfi1fseqlem4 25646 itg2monolem1 25678 aannenlem2 26264 2lgslem1b 27330 bdayfo 27616 nosupno 27642 noinfno 27657 addsuniflem 27944 mptelee 28873 disjrnmpt 32565 ofrn2 32622 abrexct 32698 abrexctf 32700 qusbas2 33371 nsgqusf1olem2 33379 esumc 34064 esumrnmpt 34065 carsgclctunlem3 34333 eulerpartlemt 34384 fobigcup 35942 ptrest 37667 areacirclem2 37757 istotbnd3 37819 sstotbnd 37823 dfqs2 42278 rnasclg 42540 rmxypairf1o 42952 hbtlem6 43170 onsucrn 43312 elrnmptf 45226 fnrnafv 47201 fundcmpsurinjlem1 47437 imasetpreimafvbijlemfo 47444 fargshiftfo 47481 |
| Copyright terms: Public domain | W3C validator |