Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5852 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 5154 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2766 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5835 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2776 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∃wrex 3064 {copab 5132 ↦ cmpt 5153 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: elrnmpt 5854 elrnmpt1 5856 elrnmptg 5857 dfiun3g 5862 dfiin3g 5863 fnrnfv 6811 fmpt 6966 fnasrn 6999 fliftf 7166 abrexexg 7777 fo1st 7824 fo2nd 7825 fsplitfpar 7930 qliftf 8552 abrexfi 9049 iinfi 9106 tz9.12lem1 9476 infmap2 9905 cfslb2n 9955 fin23lem29 10028 fin23lem30 10029 fin1a2lem11 10097 ac6num 10166 rankcf 10464 tskuni 10470 negfi 11854 4sqlem11 16584 4sqlem12 16585 vdwapval 16602 vdwlem6 16615 quslem 17171 smndex2dnrinv 18469 conjnmzb 18784 pmtrprfvalrn 19011 sylow1lem2 19119 sylow3lem1 19147 sylow3lem2 19148 ablsimpgfind 19628 ellspd 20919 rnascl 21005 iinopn 21959 restco 22223 pnrmopn 22402 cncmp 22451 discmp 22457 comppfsc 22591 alexsublem 23103 ptcmplem3 23113 snclseqg 23175 prdsxmetlem 23429 prdsbl 23553 xrhmeo 24015 pi1xfrf 24122 pi1cof 24128 iunmbl 24622 voliun 24623 itg1addlem4 24768 itg1addlem4OLD 24769 i1fmulc 24773 mbfi1fseqlem4 24788 itg2monolem1 24820 aannenlem2 25394 2lgslem1b 26445 mptelee 27166 disjrnmpt 30825 ofrn2 30878 abrexct 30953 abrexctf 30955 nsgqusf1olem2 31501 esumc 31919 esumrnmpt 31920 carsgclctunlem3 32187 eulerpartlemt 32238 bdayfo 33807 nosupno 33833 noinfno 33848 fobigcup 34129 ptrest 35703 areacirclem2 35793 istotbnd3 35856 sstotbnd 35860 dfqs2 40138 rnasclg 40149 rmxypairf1o 40649 hbtlem6 40870 elrnmptf 42607 fnrnafv 44541 fundcmpsurinjlem1 44738 imasetpreimafvbijlemfo 44745 fargshiftfo 44782 |
Copyright terms: Public domain | W3C validator |