Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5866 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | df-mpt 5159 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | 2, 3 | eqtri 2767 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | 4 | rneqi 5849 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
6 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
7 | 6 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
8 | 1, 5, 7 | 3eqtr4i 2777 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2107 {cab 2716 ∃wrex 3066 {copab 5137 ↦ cmpt 5158 ran crn 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-mpt 5159 df-cnv 5598 df-dm 5600 df-rn 5601 |
This theorem is referenced by: elrnmpt 5868 elrnmpt1 5870 elrnmptg 5871 dfiun3g 5876 dfiin3g 5877 fnrnfv 6838 fmpt 6993 fnasrn 7026 fliftf 7195 abrexexgOLD 7813 fo1st 7860 fo2nd 7861 fsplitfpar 7968 qliftf 8603 abrexfi 9128 iinfi 9185 tz9.12lem1 9554 infmap2 9983 cfslb2n 10033 fin23lem29 10106 fin23lem30 10107 fin1a2lem11 10175 ac6num 10244 rankcf 10542 tskuni 10548 negfi 11933 4sqlem11 16665 4sqlem12 16666 vdwapval 16683 vdwlem6 16696 quslem 17263 smndex2dnrinv 18563 conjnmzb 18878 pmtrprfvalrn 19105 sylow1lem2 19213 sylow3lem1 19241 sylow3lem2 19242 ablsimpgfind 19722 ellspd 21018 rnascl 21104 iinopn 22060 restco 22324 pnrmopn 22503 cncmp 22552 discmp 22558 comppfsc 22692 alexsublem 23204 ptcmplem3 23214 snclseqg 23276 prdsxmetlem 23530 prdsbl 23656 xrhmeo 24118 pi1xfrf 24225 pi1cof 24231 iunmbl 24726 voliun 24727 itg1addlem4 24872 itg1addlem4OLD 24873 i1fmulc 24877 mbfi1fseqlem4 24892 itg2monolem1 24924 aannenlem2 25498 2lgslem1b 26549 mptelee 27272 disjrnmpt 30933 ofrn2 30986 abrexct 31060 abrexctf 31062 nsgqusf1olem2 31608 esumc 32028 esumrnmpt 32029 carsgclctunlem3 32296 eulerpartlemt 32347 bdayfo 33889 nosupno 33915 noinfno 33930 fobigcup 34211 ptrest 35785 areacirclem2 35875 istotbnd3 35938 sstotbnd 35942 dfqs2 40219 rnasclg 40230 rmxypairf1o 40740 hbtlem6 40961 elrnmptf 42725 fnrnafv 44665 fundcmpsurinjlem1 44861 imasetpreimafvbijlemfo 44868 fargshiftfo 44905 |
Copyright terms: Public domain | W3C validator |