| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmpt | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| rnmpt | ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab 5918 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | df-mpt 5189 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 4 | 2, 3 | eqtri 2752 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | 4 | rneqi 5901 | . 2 ⊢ ran 𝐹 = ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 6 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) | |
| 7 | 6 | abbii 2796 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 8 | 1, 5, 7 | 3eqtr4i 2762 | 1 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {copab 5169 ↦ cmpt 5188 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: elrnmpt 5922 elrnmpt1 5924 elrnmptg 5925 dfiun3g 5931 dfiin3g 5932 fnrnfv 6920 fmpt 7082 fnasrn 7117 fliftf 7290 abrexexgOLD 7940 fo1st 7988 fo2nd 7989 fsplitfpar 8097 qliftf 8778 abrexfi 9303 iinfi 9368 tz9.12lem1 9740 infmap2 10170 cfslb2n 10221 fin23lem29 10294 fin23lem30 10295 fin1a2lem11 10363 ac6num 10432 rankcf 10730 tskuni 10736 negfi 12132 4sqlem11 16926 4sqlem12 16927 vdwapval 16944 vdwlem6 16957 quslem 17506 smndex2dnrinv 18842 conjnmzb 19185 pmtrprfvalrn 19418 sylow1lem2 19529 sylow3lem1 19557 sylow3lem2 19558 ablsimpgfind 20042 pzriprnglem10 21400 ellspd 21711 rnascl 21800 iinopn 22789 restco 23051 pnrmopn 23230 cncmp 23279 discmp 23285 comppfsc 23419 alexsublem 23931 ptcmplem3 23941 snclseqg 24003 prdsxmetlem 24256 prdsbl 24379 xrhmeo 24844 pi1xfrf 24953 pi1cof 24959 iunmbl 25454 voliun 25455 itg1addlem4 25600 i1fmulc 25604 mbfi1fseqlem4 25619 itg2monolem1 25651 aannenlem2 26237 2lgslem1b 27303 bdayfo 27589 nosupno 27615 noinfno 27630 addsuniflem 27908 mptelee 28822 disjrnmpt 32514 ofrn2 32564 abrexct 32640 abrexctf 32642 qusbas2 33377 nsgqusf1olem2 33385 esumc 34041 esumrnmpt 34042 carsgclctunlem3 34311 eulerpartlemt 34362 fobigcup 35888 ptrest 37613 areacirclem2 37703 istotbnd3 37765 sstotbnd 37769 dfqs2 42225 rnasclg 42487 rmxypairf1o 42900 hbtlem6 43118 onsucrn 43260 elrnmptf 45175 fnrnafv 47163 fundcmpsurinjlem1 47399 imasetpreimafvbijlemfo 47406 fargshiftfo 47443 |
| Copyright terms: Public domain | W3C validator |