| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfiun2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| dfiun2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4994 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | dfiun2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ V) |
| 4 | 1, 3 | mprg 3050 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 ∪ cuni 4871 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-uni 4872 df-iun 4957 |
| This theorem is referenced by: fniunfv 7221 funcnvuni 7908 fiun 7921 f1iun 7922 tfrlem8 8352 rdglim2a 8401 rankuni 9816 cardiun 9935 kmlem11 10114 cfslb2n 10221 enfin2i 10274 pwcfsdom 10536 rankcf 10730 tskuni 10736 discmp 23285 cmpsublem 23286 cmpsub 23287 nnoeomeqom 43301 |
| Copyright terms: Public domain | W3C validator |