| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfiun2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| dfiun2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun2g 4978 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
| 2 | dfiun2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ V) |
| 4 | 1, 3 | mprg 3053 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 ∪ cuni 4856 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-uni 4857 df-iun 4941 |
| This theorem is referenced by: fniunfv 7181 funcnvuni 7862 fiun 7875 f1iun 7876 tfrlem8 8303 rdglim2a 8352 rankuni 9756 cardiun 9875 kmlem11 10052 cfslb2n 10159 enfin2i 10212 pwcfsdom 10474 rankcf 10668 tskuni 10674 discmp 23313 cmpsublem 23314 cmpsub 23315 rankfilimbi 35112 nnoeomeqom 43404 |
| Copyright terms: Public domain | W3C validator |