MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2 Structured version   Visualization version   GIF version

Theorem dfiun2 5000
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
dfiun2.1 𝐵 ∈ V
Assertion
Ref Expression
dfiun2 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dfiun2
StepHypRef Expression
1 dfiun2g 4997 . 2 (∀𝑥𝐴 𝐵 ∈ V → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2 dfiun2.1 . . 3 𝐵 ∈ V
32a1i 11 . 2 (𝑥𝐴𝐵 ∈ V)
41, 3mprg 3051 1 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450   cuni 4874   ciun 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-uni 4875  df-iun 4960
This theorem is referenced by:  fniunfv  7224  funcnvuni  7911  fiun  7924  f1iun  7925  tfrlem8  8355  rdglim2a  8404  rankuni  9823  cardiun  9942  kmlem11  10121  cfslb2n  10228  enfin2i  10281  pwcfsdom  10543  rankcf  10737  tskuni  10743  discmp  23292  cmpsublem  23293  cmpsub  23294  nnoeomeqom  43308
  Copyright terms: Public domain W3C validator