Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfiun2 | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
dfiun2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 4977 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | dfiun2.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ V) |
4 | 1, 3 | mprg 3067 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 {cab 2713 ∃wrex 3070 Vcvv 3441 ∪ cuni 4852 ∪ ciun 4941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-v 3443 df-uni 4853 df-iun 4943 |
This theorem is referenced by: fniunfv 7176 funcnvuni 7846 fiun 7853 f1iun 7854 tfrlem8 8285 rdglim2a 8334 rankuni 9720 cardiun 9839 kmlem11 10017 cfslb2n 10125 enfin2i 10178 pwcfsdom 10440 rankcf 10634 tskuni 10640 discmp 22655 cmpsublem 22656 cmpsub 22657 |
Copyright terms: Public domain | W3C validator |