Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetabsnop Structured version   Visualization version   GIF version

Theorem fsetabsnop 45760
Description: The class of all functions from a (proper) singleton into 𝐵 is the class of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetabsnop (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
Distinct variable groups:   𝐵,𝑏,𝑓   𝑆,𝑏,𝑓   𝑉,𝑏   𝑦,𝐵,𝑏   𝑦,𝑆
Allowed substitution hints:   𝑉(𝑦,𝑓)

Proof of Theorem fsetabsnop
StepHypRef Expression
1 fsetsniunop 45759 . 2 (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = 𝑏𝐵 {{⟨𝑆, 𝑏⟩}})
2 iunsn 5070 . 2 𝑏𝐵 {{⟨𝑆, 𝑏⟩}} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
31, 2eqtrdi 2789 1 (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  {csn 4629  cop 4635   ciun 4998  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552
This theorem is referenced by:  fsetsnprcnex  45765
  Copyright terms: Public domain W3C validator