| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjiun2 | Structured version Visualization version GIF version | ||
| Description: In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| disjiun2.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
| disjiun2.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| disjiun2.3 | ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) |
| disjiun2.4 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) |
| Ref | Expression |
|---|---|
| disjiun2 | ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjiun2.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) | |
| 2 | disjiun2.4 | . . . . 5 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) | |
| 3 | 2 | iunxsng 5071 | . . . 4 ⊢ (𝐷 ∈ (𝐴 ∖ 𝐶) → ∪ 𝑥 ∈ {𝐷}𝐵 = 𝐸) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ {𝐷}𝐵 = 𝐸) |
| 5 | 4 | ineq2d 4200 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ {𝐷}𝐵) = (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸)) |
| 6 | disjiun2.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
| 7 | disjiun2.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 8 | eldifi 4111 | . . . 4 ⊢ (𝐷 ∈ (𝐴 ∖ 𝐶) → 𝐷 ∈ 𝐴) | |
| 9 | snssi 4789 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → {𝐷} ⊆ 𝐴) | |
| 10 | 1, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → {𝐷} ⊆ 𝐴) |
| 11 | 1 | eldifbd 3944 | . . . 4 ⊢ (𝜑 → ¬ 𝐷 ∈ 𝐶) |
| 12 | disjsn 4692 | . . . 4 ⊢ ((𝐶 ∩ {𝐷}) = ∅ ↔ ¬ 𝐷 ∈ 𝐶) | |
| 13 | 11, 12 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝐶 ∩ {𝐷}) = ∅) |
| 14 | disjiun 5112 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ {𝐷} ⊆ 𝐴 ∧ (𝐶 ∩ {𝐷}) = ∅)) → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ {𝐷}𝐵) = ∅) | |
| 15 | 6, 7, 10, 13, 14 | syl13anc 1374 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ {𝐷}𝐵) = ∅) |
| 16 | 5, 15 | eqtr3d 2773 | 1 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {csn 4606 ∪ ciun 4972 Disj wdisj 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 df-sn 4607 df-iun 4974 df-disj 5092 |
| This theorem is referenced by: caratheodorylem1 46535 |
| Copyright terms: Public domain | W3C validator |