Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjiun2 | Structured version Visualization version GIF version |
Description: In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
disjiun2.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
disjiun2.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
disjiun2.3 | ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) |
disjiun2.4 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
disjiun2 | ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjiun2.3 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) | |
2 | disjiun2.4 | . . . . 5 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) | |
3 | 2 | iunxsng 5019 | . . . 4 ⊢ (𝐷 ∈ (𝐴 ∖ 𝐶) → ∪ 𝑥 ∈ {𝐷}𝐵 = 𝐸) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ {𝐷}𝐵 = 𝐸) |
5 | 4 | ineq2d 4146 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ {𝐷}𝐵) = (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸)) |
6 | disjiun2.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) | |
7 | disjiun2.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
8 | eldifi 4061 | . . . 4 ⊢ (𝐷 ∈ (𝐴 ∖ 𝐶) → 𝐷 ∈ 𝐴) | |
9 | snssi 4741 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → {𝐷} ⊆ 𝐴) | |
10 | 1, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → {𝐷} ⊆ 𝐴) |
11 | 1 | eldifbd 3900 | . . . 4 ⊢ (𝜑 → ¬ 𝐷 ∈ 𝐶) |
12 | disjsn 4647 | . . . 4 ⊢ ((𝐶 ∩ {𝐷}) = ∅ ↔ ¬ 𝐷 ∈ 𝐶) | |
13 | 11, 12 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐶 ∩ {𝐷}) = ∅) |
14 | disjiun 5061 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ {𝐷} ⊆ 𝐴 ∧ (𝐶 ∩ {𝐷}) = ∅)) → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ {𝐷}𝐵) = ∅) | |
15 | 6, 7, 10, 13, 14 | syl13anc 1371 | . 2 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ {𝐷}𝐵) = ∅) |
16 | 5, 15 | eqtr3d 2780 | 1 ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ ciun 4924 Disj wdisj 5039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-iun 4926 df-disj 5040 |
This theorem is referenced by: caratheodorylem1 44064 |
Copyright terms: Public domain | W3C validator |