Step | Hyp | Ref
| Expression |
1 | | caratheodorylem1.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 13263 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | id 22 |
. 2
⊢ (𝜑 → 𝜑) |
5 | | 2fveq3 6776 |
. . . . 5
⊢ (𝑗 = 𝑀 → (𝑂‘(𝐺‘𝑗)) = (𝑂‘(𝐺‘𝑀))) |
6 | | oveq2 7279 |
. . . . . . 7
⊢ (𝑗 = 𝑀 → (𝑀...𝑗) = (𝑀...𝑀)) |
7 | 6 | mpteq1d 5174 |
. . . . . 6
⊢ (𝑗 = 𝑀 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸‘𝑛)))) |
8 | 7 | fveq2d 6775 |
. . . . 5
⊢ (𝑗 = 𝑀 →
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛)))) =
(Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸‘𝑛))))) |
9 | 5, 8 | eqeq12d 2756 |
. . . 4
⊢ (𝑗 = 𝑀 → ((𝑂‘(𝐺‘𝑗)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛)))) ↔ (𝑂‘(𝐺‘𝑀)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸‘𝑛)))))) |
10 | 9 | imbi2d 341 |
. . 3
⊢ (𝑗 = 𝑀 → ((𝜑 → (𝑂‘(𝐺‘𝑗)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺‘𝑀)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸‘𝑛))))))) |
11 | | 2fveq3 6776 |
. . . . 5
⊢ (𝑗 = 𝑖 → (𝑂‘(𝐺‘𝑗)) = (𝑂‘(𝐺‘𝑖))) |
12 | | oveq2 7279 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (𝑀...𝑗) = (𝑀...𝑖)) |
13 | 12 | mpteq1d 5174 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) |
14 | 13 | fveq2d 6775 |
. . . . 5
⊢ (𝑗 = 𝑖 →
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛)))) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) |
15 | 11, 14 | eqeq12d 2756 |
. . . 4
⊢ (𝑗 = 𝑖 → ((𝑂‘(𝐺‘𝑗)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛)))) ↔ (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))))) |
16 | 15 | imbi2d 341 |
. . 3
⊢ (𝑗 = 𝑖 → ((𝜑 → (𝑂‘(𝐺‘𝑗)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))))) |
17 | | 2fveq3 6776 |
. . . . 5
⊢ (𝑗 = (𝑖 + 1) → (𝑂‘(𝐺‘𝑗)) = (𝑂‘(𝐺‘(𝑖 + 1)))) |
18 | | oveq2 7279 |
. . . . . . 7
⊢ (𝑗 = (𝑖 + 1) → (𝑀...𝑗) = (𝑀...(𝑖 + 1))) |
19 | 18 | mpteq1d 5174 |
. . . . . 6
⊢ (𝑗 = (𝑖 + 1) → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛)))) |
20 | 19 | fveq2d 6775 |
. . . . 5
⊢ (𝑗 = (𝑖 + 1) →
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛)))) =
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛))))) |
21 | 17, 20 | eqeq12d 2756 |
. . . 4
⊢ (𝑗 = (𝑖 + 1) → ((𝑂‘(𝐺‘𝑗)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛)))) ↔ (𝑂‘(𝐺‘(𝑖 + 1))) =
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛)))))) |
22 | 21 | imbi2d 341 |
. . 3
⊢ (𝑗 = (𝑖 + 1) → ((𝜑 → (𝑂‘(𝐺‘𝑗)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺‘(𝑖 + 1))) =
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛))))))) |
23 | | 2fveq3 6776 |
. . . . 5
⊢ (𝑗 = 𝑁 → (𝑂‘(𝐺‘𝑗)) = (𝑂‘(𝐺‘𝑁))) |
24 | | oveq2 7279 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝑀...𝑗) = (𝑀...𝑁)) |
25 | 24 | mpteq1d 5174 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸‘𝑛)))) |
26 | 25 | fveq2d 6775 |
. . . . 5
⊢ (𝑗 = 𝑁 →
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛)))) =
(Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸‘𝑛))))) |
27 | 23, 26 | eqeq12d 2756 |
. . . 4
⊢ (𝑗 = 𝑁 → ((𝑂‘(𝐺‘𝑗)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛)))) ↔ (𝑂‘(𝐺‘𝑁)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸‘𝑛)))))) |
28 | 27 | imbi2d 341 |
. . 3
⊢ (𝑗 = 𝑁 → ((𝜑 → (𝑂‘(𝐺‘𝑗)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸‘𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺‘𝑁)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸‘𝑛))))))) |
29 | | eluzel2 12586 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
30 | 1, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
31 | | fzsn 13297 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
32 | 30, 31 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
33 | 32 | mpteq1d 5174 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛)))) |
34 | 33 | fveq2d 6775 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸‘𝑛)))) =
(Σ^‘(𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛))))) |
35 | | caratheodorylem1.o |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
36 | 35 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → 𝑂 ∈ OutMeas) |
37 | | eqid 2740 |
. . . . . . . 8
⊢ ∪ dom 𝑂 = ∪ dom 𝑂 |
38 | | caratheodorylem1.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (CaraGen‘𝑂) |
39 | 38 | caragenss 44013 |
. . . . . . . . . . 11
⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
40 | 36, 39 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → 𝑆 ⊆ dom 𝑂) |
41 | | caratheodorylem1.e |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸:𝑍⟶𝑆) |
42 | 41 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → 𝐸:𝑍⟶𝑆) |
43 | | elsni 4584 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {𝑀} → 𝑛 = 𝑀) |
44 | 43 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → 𝑛 = 𝑀) |
45 | | uzid 12596 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
46 | 30, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
47 | | caratheodorylem1.z |
. . . . . . . . . . . . . 14
⊢ 𝑍 =
(ℤ≥‘𝑀) |
48 | 46, 47 | eleqtrrdi 2852 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
49 | 48 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → 𝑀 ∈ 𝑍) |
50 | 44, 49 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → 𝑛 ∈ 𝑍) |
51 | 42, 50 | ffvelrnd 6959 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → (𝐸‘𝑛) ∈ 𝑆) |
52 | 40, 51 | sseldd 3927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → (𝐸‘𝑛) ∈ dom 𝑂) |
53 | | elssuni 4877 |
. . . . . . . . 9
⊢ ((𝐸‘𝑛) ∈ dom 𝑂 → (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
54 | 52, 53 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
55 | 36, 37, 54 | omecl 44012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ {𝑀}) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
56 | | eqid 2740 |
. . . . . . 7
⊢ (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛))) |
57 | 55, 56 | fmptd 6985 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛))):{𝑀}⟶(0[,]+∞)) |
58 | 30, 57 | sge0sn 43888 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛)))) = ((𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛)))‘𝑀)) |
59 | | eqidd 2741 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛)))) |
60 | 32 | iuneq1d 4957 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) = ∪ 𝑖 ∈ {𝑀} (𝐸‘𝑖)) |
61 | | fveq2 6771 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑀 → (𝐸‘𝑖) = (𝐸‘𝑀)) |
62 | 61 | iunxsng 5024 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝑍 → ∪
𝑖 ∈ {𝑀} (𝐸‘𝑖) = (𝐸‘𝑀)) |
63 | 48, 62 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ {𝑀} (𝐸‘𝑖) = (𝐸‘𝑀)) |
64 | | eqidd 2741 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸‘𝑀) = (𝐸‘𝑀)) |
65 | 60, 63, 64 | 3eqtrrd 2785 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸‘𝑀) = ∪
𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
66 | 65 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 = 𝑀) → (𝐸‘𝑀) = ∪
𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
67 | | fveq2 6771 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (𝐸‘𝑛) = (𝐸‘𝑀)) |
68 | 67 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 = 𝑀) → (𝐸‘𝑛) = (𝐸‘𝑀)) |
69 | | caratheodorylem1.g |
. . . . . . . . . 10
⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) |
70 | | oveq2 7279 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀)) |
71 | 70 | iuneq1d 4957 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
72 | | ovex 7304 |
. . . . . . . . . . . 12
⊢ (𝑀...𝑀) ∈ V |
73 | | fvex 6784 |
. . . . . . . . . . . 12
⊢ (𝐸‘𝑖) ∈ V |
74 | 72, 73 | iunex 7804 |
. . . . . . . . . . 11
⊢ ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) ∈ V |
75 | 74 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖) ∈ V) |
76 | 69, 71, 48, 75 | fvmptd3 6895 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑀) = ∪
𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
77 | 76 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 = 𝑀) → (𝐺‘𝑀) = ∪
𝑖 ∈ (𝑀...𝑀)(𝐸‘𝑖)) |
78 | 66, 68, 77 | 3eqtr4d 2790 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 = 𝑀) → (𝐸‘𝑛) = (𝐺‘𝑀)) |
79 | 78 | fveq2d 6775 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 = 𝑀) → (𝑂‘(𝐸‘𝑛)) = (𝑂‘(𝐺‘𝑀))) |
80 | | snidg 4601 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑍 → 𝑀 ∈ {𝑀}) |
81 | 48, 80 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ {𝑀}) |
82 | | fvexd 6786 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐺‘𝑀)) ∈ V) |
83 | 59, 79, 81, 82 | fvmptd 6879 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸‘𝑛)))‘𝑀) = (𝑂‘(𝐺‘𝑀))) |
84 | 34, 58, 83 | 3eqtrrd 2785 |
. . . 4
⊢ (𝜑 → (𝑂‘(𝐺‘𝑀)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸‘𝑛))))) |
85 | 84 | a1i 11 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑂‘(𝐺‘𝑀)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸‘𝑛)))))) |
86 | | simp3 1137 |
. . . . 5
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) ∧ 𝜑) → 𝜑) |
87 | | simp1 1135 |
. . . . 5
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) ∧ 𝜑) → 𝑖 ∈ (𝑀..^𝑁)) |
88 | | id 22 |
. . . . . . 7
⊢ ((𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) → (𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))))) |
89 | 88 | imp 407 |
. . . . . 6
⊢ (((𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) |
90 | 89 | 3adant1 1129 |
. . . . 5
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) |
91 | | elfzoel1 13384 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) |
92 | | elfzoelz 13386 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℤ) |
93 | 92 | peano2zd 12428 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ ℤ) |
94 | 91 | zred 12425 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ) |
95 | 93 | zred 12425 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ ℝ) |
96 | 92 | zred 12425 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℝ) |
97 | | elfzole1 13394 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝑖) |
98 | 96 | ltp1d 11905 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑖 < (𝑖 + 1)) |
99 | 94, 96, 95, 97, 98 | lelttrd 11133 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑀 < (𝑖 + 1)) |
100 | 94, 95, 99 | ltled 11123 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ≤ (𝑖 + 1)) |
101 | | leid 11071 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 + 1) ∈ ℝ →
(𝑖 + 1) ≤ (𝑖 + 1)) |
102 | 95, 101 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ≤ (𝑖 + 1)) |
103 | 91, 93, 93, 100, 102 | elfzd 13246 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ (𝑀...(𝑖 + 1))) |
104 | 103 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (𝑀...(𝑖 + 1))) |
105 | | fveq2 6771 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑖 + 1) → (𝐸‘𝑗) = (𝐸‘(𝑖 + 1))) |
106 | 105 | ssiun2s 4983 |
. . . . . . . . . . . 12
⊢ ((𝑖 + 1) ∈ (𝑀...(𝑖 + 1)) → (𝐸‘(𝑖 + 1)) ⊆ ∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗)) |
107 | 104, 106 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ ∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗)) |
108 | | fveq2 6771 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝐸‘𝑖) = (𝐸‘𝑗)) |
109 | 108 | cbviunv 4975 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖) = ∪ 𝑗 ∈ (𝑀...𝑛)(𝐸‘𝑗) |
110 | 109 | mpteq2i 5184 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑍 ↦ ∪
𝑖 ∈ (𝑀...𝑛)(𝐸‘𝑖)) = (𝑛 ∈ 𝑍 ↦ ∪
𝑗 ∈ (𝑀...𝑛)(𝐸‘𝑗)) |
111 | 69, 110 | eqtri 2768 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪
𝑗 ∈ (𝑀...𝑛)(𝐸‘𝑗)) |
112 | | oveq2 7279 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑖 + 1) → (𝑀...𝑛) = (𝑀...(𝑖 + 1))) |
113 | 112 | iuneq1d 4957 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑖 + 1) → ∪ 𝑗 ∈ (𝑀...𝑛)(𝐸‘𝑗) = ∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗)) |
114 | 30 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ) |
115 | 92 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℤ) |
116 | 115 | peano2zd 12428 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ ℤ) |
117 | 114 | zred 12425 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ) |
118 | 116 | zred 12425 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ ℝ) |
119 | 115 | zred 12425 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℝ) |
120 | 97 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ≤ 𝑖) |
121 | 119 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑖 < (𝑖 + 1)) |
122 | 117, 119,
118, 120, 121 | lelttrd 11133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑀 < (𝑖 + 1)) |
123 | 117, 118,
122 | ltled 11123 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ≤ (𝑖 + 1)) |
124 | 114, 116,
123 | 3jca 1127 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1))) |
125 | | eluz2 12587 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 + 1) ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1))) |
126 | 124, 125 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈
(ℤ≥‘𝑀)) |
127 | 47 | eqcomi 2749 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘𝑀) = 𝑍 |
128 | 126, 127 | eleqtrdi 2851 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ 𝑍) |
129 | | ovex 7304 |
. . . . . . . . . . . . . . 15
⊢ (𝑀...(𝑖 + 1)) ∈ V |
130 | | fvex 6784 |
. . . . . . . . . . . . . . 15
⊢ (𝐸‘𝑗) ∈ V |
131 | 129, 130 | iunex 7804 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗) ∈ V |
132 | 131 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗) ∈ V) |
133 | 111, 113,
128, 132 | fvmptd3 6895 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) = ∪
𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗)) |
134 | 133 | eqcomd 2746 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗) = (𝐺‘(𝑖 + 1))) |
135 | 107, 134 | sseqtrd 3966 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1))) |
136 | | sseqin2 4155 |
. . . . . . . . . . 11
⊢ ((𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)) ↔ ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1))) |
137 | 136 | biimpi 215 |
. . . . . . . . . 10
⊢ ((𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)) → ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1))) |
138 | 135, 137 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1))) |
139 | 138 | fveq2d 6775 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) = (𝑂‘(𝐸‘(𝑖 + 1)))) |
140 | | nfcv 2909 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗(𝐸‘(𝑖 + 1)) |
141 | | elfzouz 13390 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ (ℤ≥‘𝑀)) |
142 | 141 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
143 | 140, 142,
105 | iunp1 42584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗) = (∪
𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ (𝐸‘(𝑖 + 1)))) |
144 | 133, 143 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) = (∪
𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ (𝐸‘(𝑖 + 1)))) |
145 | 144 | difeq1d 4061 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ((∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1)))) |
146 | | caratheodorylem1.dj |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Disj 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
147 | | fveq2 6771 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → (𝐸‘𝑛) = (𝐸‘𝑗)) |
148 | 147 | cbvdisjv 5055 |
. . . . . . . . . . . . . . 15
⊢
(Disj 𝑛
∈ 𝑍 (𝐸‘𝑛) ↔ Disj 𝑗 ∈ 𝑍 (𝐸‘𝑗)) |
149 | 146, 148 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Disj 𝑗 ∈ 𝑍 (𝐸‘𝑗)) |
150 | 149 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → Disj 𝑗 ∈ 𝑍 (𝐸‘𝑗)) |
151 | | fzssuz 13296 |
. . . . . . . . . . . . . . 15
⊢ (𝑀...𝑖) ⊆ (ℤ≥‘𝑀) |
152 | 151, 127 | sseqtri 3962 |
. . . . . . . . . . . . . 14
⊢ (𝑀...𝑖) ⊆ 𝑍 |
153 | 152 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑀...𝑖) ⊆ 𝑍) |
154 | | fzp1nel 13339 |
. . . . . . . . . . . . . . . 16
⊢ ¬
(𝑖 + 1) ∈ (𝑀...𝑖) |
155 | 154 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑀..^𝑁) → ¬ (𝑖 + 1) ∈ (𝑀...𝑖)) |
156 | 155 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ¬ (𝑖 + 1) ∈ (𝑀...𝑖)) |
157 | 128, 156 | eldifd 3903 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (𝑍 ∖ (𝑀...𝑖))) |
158 | 150, 153,
157, 105 | disjiun2 42576 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∩ (𝐸‘(𝑖 + 1))) = ∅) |
159 | | undif4 4406 |
. . . . . . . . . . . 12
⊢
((∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∩ (𝐸‘(𝑖 + 1))) = ∅ → (∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = ((∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1)))) |
160 | 158, 159 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = ((∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1)))) |
161 | 160 | eqcomd 2746 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))) = (∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) |
162 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝜑) |
163 | 142, 127 | eleqtrdi 2851 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ 𝑍) |
164 | 111 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐺 = (𝑛 ∈ 𝑍 ↦ ∪
𝑗 ∈ (𝑀...𝑛)(𝐸‘𝑗))) |
165 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 = 𝑖) → 𝑛 = 𝑖) |
166 | 165 | oveq2d 7287 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 = 𝑖) → (𝑀...𝑛) = (𝑀...𝑖)) |
167 | 166 | iuneq1d 4957 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 = 𝑖) → ∪
𝑗 ∈ (𝑀...𝑛)(𝐸‘𝑗) = ∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗)) |
168 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ 𝑍) |
169 | | ovex 7304 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀...𝑖) ∈ V |
170 | 169, 130 | iunex 7804 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∈ V |
171 | 170 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ∪
𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∈ V) |
172 | 164, 167,
168, 171 | fvmptd 6879 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐺‘𝑖) = ∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗)) |
173 | 162, 163,
172 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘𝑖) = ∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗)) |
174 | 173 | eqcomd 2746 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) = (𝐺‘𝑖)) |
175 | | difid 4310 |
. . . . . . . . . . . . 13
⊢ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ∅ |
176 | 175 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ∅) |
177 | 174, 176 | uneq12d 4103 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = ((𝐺‘𝑖) ∪ ∅)) |
178 | | un0 4330 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝑖) ∪ ∅) = (𝐺‘𝑖) |
179 | 178 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘𝑖) ∪ ∅) = (𝐺‘𝑖)) |
180 | 177, 179 | eqtrd 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (𝐺‘𝑖)) |
181 | 145, 161,
180 | 3eqtrd 2784 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = (𝐺‘𝑖)) |
182 | 181 | fveq2d 6775 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (𝑂‘(𝐺‘𝑖))) |
183 | 139, 182 | oveq12d 7289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺‘𝑖)))) |
184 | 183 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺‘𝑖)))) |
185 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝑂 ∈ OutMeas) |
186 | 41 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → 𝐸:𝑍⟶𝑆) |
187 | 186, 128 | ffvelrnd 6959 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ∈ 𝑆) |
188 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝜑) |
189 | 91 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑀 ∈ ℤ) |
190 | | elfzelz 13255 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (𝑀...(𝑖 + 1)) → 𝑗 ∈ ℤ) |
191 | 190 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ ℤ) |
192 | | elfzle1 13258 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (𝑀...(𝑖 + 1)) → 𝑀 ≤ 𝑗) |
193 | 192 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑀 ≤ 𝑗) |
194 | 189, 191,
193 | 3jca 1127 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗)) |
195 | | eluz2 12587 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗)) |
196 | 194, 195 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ (ℤ≥‘𝑀)) |
197 | 196, 127 | eleqtrdi 2851 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ 𝑍) |
198 | 197 | adantll 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ 𝑍) |
199 | 35, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ⊆ dom 𝑂) |
200 | 199 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑆 ⊆ dom 𝑂) |
201 | 41 | ffvelrnda 6958 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐸‘𝑗) ∈ 𝑆) |
202 | 200, 201 | sseldd 3927 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐸‘𝑗) ∈ dom 𝑂) |
203 | | elssuni 4877 |
. . . . . . . . . . . . . 14
⊢ ((𝐸‘𝑗) ∈ dom 𝑂 → (𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
204 | 202, 203 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
205 | 188, 198,
204 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → (𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
206 | 205 | ralrimiva 3110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ∀𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
207 | | iunss 4980 |
. . . . . . . . . . 11
⊢ (∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗) ⊆ ∪ dom
𝑂 ↔ ∀𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
208 | 206, 207 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ∪ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
209 | 133, 208 | eqsstrd 3964 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) ⊆ ∪
dom 𝑂) |
210 | 185, 38, 37, 187, 209 | caragensplit 44009 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = (𝑂‘(𝐺‘(𝑖 + 1)))) |
211 | 210 | eqcomd 2746 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐺‘(𝑖 + 1))) = ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))))) |
212 | 211 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) → (𝑂‘(𝐺‘(𝑖 + 1))) = ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))))) |
213 | 185 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝑂 ∈ OutMeas) |
214 | 162 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝜑) |
215 | | elfzuz 13251 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀...(𝑖 + 1)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
216 | 215, 127 | eleqtrdi 2851 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑀...(𝑖 + 1)) → 𝑛 ∈ 𝑍) |
217 | 216 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝑛 ∈ 𝑍) |
218 | 41, 199 | fssd 6616 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑂) |
219 | 218 | ffvelrnda 6958 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ dom 𝑂) |
220 | 219, 53 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
221 | 214, 217,
220 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → (𝐸‘𝑛) ⊆ ∪ dom
𝑂) |
222 | 213, 37, 221 | omecl 44012 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
223 | | 2fveq3 6776 |
. . . . . . . . 9
⊢ (𝑛 = (𝑖 + 1) → (𝑂‘(𝐸‘𝑛)) = (𝑂‘(𝐸‘(𝑖 + 1)))) |
224 | 142, 222,
223 | sge0p1 43923 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) →
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛)))) =
((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1))))) |
225 | 224 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) →
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛)))) =
((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1))))) |
226 | | id 22 |
. . . . . . . . . 10
⊢ ((𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) |
227 | 226 | eqcomd 2746 |
. . . . . . . . 9
⊢ ((𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) →
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) = (𝑂‘(𝐺‘𝑖))) |
228 | 227 | oveq1d 7286 |
. . . . . . . 8
⊢ ((𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) →
((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐺‘𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1))))) |
229 | 228 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) →
((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐺‘𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1))))) |
230 | | simpl 483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑖)) → 𝜑) |
231 | 152 | sseli 3922 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀...𝑖) → 𝑗 ∈ 𝑍) |
232 | 231 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑖)) → 𝑗 ∈ 𝑍) |
233 | 230, 232,
204 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑖)) → (𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
234 | 233 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (𝑀...𝑖)) → (𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
235 | 234 | ralrimiva 3110 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ∀𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
236 | | iunss 4980 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ⊆ ∪ dom
𝑂 ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
237 | 235, 236 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ∪
𝑗 ∈ (𝑀...𝑖)(𝐸‘𝑗) ⊆ ∪ dom
𝑂) |
238 | 172, 237 | eqsstrd 3964 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐺‘𝑖) ⊆ ∪ dom
𝑂) |
239 | 162, 163,
238 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘𝑖) ⊆ ∪ dom
𝑂) |
240 | 185, 37, 239 | omexrcl 44016 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐺‘𝑖)) ∈
ℝ*) |
241 | 107, 208 | sstrd 3936 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ ∪
dom 𝑂) |
242 | 185, 37, 241 | omexrcl 44016 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐸‘(𝑖 + 1))) ∈
ℝ*) |
243 | 240, 242 | xaddcomd 42834 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘(𝐺‘𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺‘𝑖)))) |
244 | 243 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) → ((𝑂‘(𝐺‘𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺‘𝑖)))) |
245 | 225, 229,
244 | 3eqtrd 2784 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) →
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺‘𝑖)))) |
246 | 184, 212,
245 | 3eqtr4d 2790 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) → (𝑂‘(𝐺‘(𝑖 + 1))) =
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛))))) |
247 | 86, 87, 90, 246 | syl3anc 1370 |
. . . 4
⊢ ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺‘(𝑖 + 1))) =
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛))))) |
248 | 247 | 3exp 1118 |
. . 3
⊢ (𝑖 ∈ (𝑀..^𝑁) → ((𝜑 → (𝑂‘(𝐺‘𝑖)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸‘𝑛))))) → (𝜑 → (𝑂‘(𝐺‘(𝑖 + 1))) =
(Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸‘𝑛))))))) |
249 | 10, 16, 22, 28, 85, 248 | fzind2 13503 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (𝑂‘(𝐺‘𝑁)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸‘𝑛)))))) |
250 | 3, 4, 249 | sylc 65 |
1
⊢ (𝜑 → (𝑂‘(𝐺‘𝑁)) =
(Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸‘𝑛))))) |