Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caratheodorylem1 Structured version   Visualization version   GIF version

Theorem caratheodorylem1 46531
Description: Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of [Fremlin1] p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caratheodorylem1.o (𝜑𝑂 ∈ OutMeas)
caratheodorylem1.s 𝑆 = (CaraGen‘𝑂)
caratheodorylem1.z 𝑍 = (ℤ𝑀)
caratheodorylem1.e (𝜑𝐸:𝑍𝑆)
caratheodorylem1.dj (𝜑Disj 𝑛𝑍 (𝐸𝑛))
caratheodorylem1.g 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
caratheodorylem1.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
caratheodorylem1 (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑖,𝐸,𝑛   𝑖,𝐺,𝑛   𝑖,𝑀,𝑛   𝑖,𝑁,𝑛   𝑖,𝑂,𝑛   𝑛,𝑍   𝜑,𝑖,𝑛
Allowed substitution hints:   𝑆(𝑖,𝑛)   𝑍(𝑖)

Proof of Theorem caratheodorylem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 caratheodorylem1.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13500 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 id 22 . 2 (𝜑𝜑)
5 2fveq3 6866 . . . . 5 (𝑗 = 𝑀 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑀)))
6 oveq2 7398 . . . . . . 7 (𝑗 = 𝑀 → (𝑀...𝑗) = (𝑀...𝑀))
76mpteq1d 5200 . . . . . 6 (𝑗 = 𝑀 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))
87fveq2d 6865 . . . . 5 (𝑗 = 𝑀 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))
95, 8eqeq12d 2746 . . . 4 (𝑗 = 𝑀 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))))
109imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))))
11 2fveq3 6866 . . . . 5 (𝑗 = 𝑖 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑖)))
12 oveq2 7398 . . . . . . 7 (𝑗 = 𝑖 → (𝑀...𝑗) = (𝑀...𝑖))
1312mpteq1d 5200 . . . . . 6 (𝑗 = 𝑖 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))
1413fveq2d 6865 . . . . 5 (𝑗 = 𝑖 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
1511, 14eqeq12d 2746 . . . 4 (𝑗 = 𝑖 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))))
1615imbi2d 340 . . 3 (𝑗 = 𝑖 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))))
17 2fveq3 6866 . . . . 5 (𝑗 = (𝑖 + 1) → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺‘(𝑖 + 1))))
18 oveq2 7398 . . . . . . 7 (𝑗 = (𝑖 + 1) → (𝑀...𝑗) = (𝑀...(𝑖 + 1)))
1918mpteq1d 5200 . . . . . 6 (𝑗 = (𝑖 + 1) → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛))))
2019fveq2d 6865 . . . . 5 (𝑗 = (𝑖 + 1) → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
2117, 20eqeq12d 2746 . . . 4 (𝑗 = (𝑖 + 1) → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛))))))
2221imbi2d 340 . . 3 (𝑗 = (𝑖 + 1) → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))))
23 2fveq3 6866 . . . . 5 (𝑗 = 𝑁 → (𝑂‘(𝐺𝑗)) = (𝑂‘(𝐺𝑁)))
24 oveq2 7398 . . . . . . 7 (𝑗 = 𝑁 → (𝑀...𝑗) = (𝑀...𝑁))
2524mpteq1d 5200 . . . . . 6 (𝑗 = 𝑁 → (𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))
2625fveq2d 6865 . . . . 5 (𝑗 = 𝑁 → (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
2723, 26eqeq12d 2746 . . . 4 (𝑗 = 𝑁 → ((𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛)))) ↔ (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))))
2827imbi2d 340 . . 3 (𝑗 = 𝑁 → ((𝜑 → (𝑂‘(𝐺𝑗)) = (Σ^‘(𝑛 ∈ (𝑀...𝑗) ↦ (𝑂‘(𝐸𝑛))))) ↔ (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))))
29 eluzel2 12805 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
301, 29syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
31 fzsn 13534 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3230, 31syl 17 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
3332mpteq1d 5200 . . . . . 6 (𝜑 → (𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))))
3433fveq2d 6865 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))) = (Σ^‘(𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))))
35 caratheodorylem1.o . . . . . . . . 9 (𝜑𝑂 ∈ OutMeas)
3635adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑀}) → 𝑂 ∈ OutMeas)
37 eqid 2730 . . . . . . . 8 dom 𝑂 = dom 𝑂
38 caratheodorylem1.s . . . . . . . . . . . 12 𝑆 = (CaraGen‘𝑂)
3938caragenss 46509 . . . . . . . . . . 11 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
4036, 39syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑀}) → 𝑆 ⊆ dom 𝑂)
41 caratheodorylem1.e . . . . . . . . . . . 12 (𝜑𝐸:𝑍𝑆)
4241adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ {𝑀}) → 𝐸:𝑍𝑆)
43 elsni 4609 . . . . . . . . . . . . 13 (𝑛 ∈ {𝑀} → 𝑛 = 𝑀)
4443adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ {𝑀}) → 𝑛 = 𝑀)
45 uzid 12815 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
4630, 45syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ𝑀))
47 caratheodorylem1.z . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
4846, 47eleqtrrdi 2840 . . . . . . . . . . . . 13 (𝜑𝑀𝑍)
4948adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ {𝑀}) → 𝑀𝑍)
5044, 49eqeltrd 2829 . . . . . . . . . . 11 ((𝜑𝑛 ∈ {𝑀}) → 𝑛𝑍)
5142, 50ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ∈ 𝑆)
5240, 51sseldd 3950 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ∈ dom 𝑂)
53 elssuni 4904 . . . . . . . . 9 ((𝐸𝑛) ∈ dom 𝑂 → (𝐸𝑛) ⊆ dom 𝑂)
5452, 53syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑀}) → (𝐸𝑛) ⊆ dom 𝑂)
5536, 37, 54omecl 46508 . . . . . . 7 ((𝜑𝑛 ∈ {𝑀}) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
56 eqid 2730 . . . . . . 7 (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))
5755, 56fmptd 7089 . . . . . 6 (𝜑 → (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))):{𝑀}⟶(0[,]+∞))
5830, 57sge0sn 46384 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))) = ((𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))‘𝑀))
59 eqidd 2731 . . . . . 6 (𝜑 → (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))) = (𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛))))
6032iuneq1d 4986 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) = 𝑖 ∈ {𝑀} (𝐸𝑖))
61 fveq2 6861 . . . . . . . . . . . 12 (𝑖 = 𝑀 → (𝐸𝑖) = (𝐸𝑀))
6261iunxsng 5057 . . . . . . . . . . 11 (𝑀𝑍 𝑖 ∈ {𝑀} (𝐸𝑖) = (𝐸𝑀))
6348, 62syl 17 . . . . . . . . . 10 (𝜑 𝑖 ∈ {𝑀} (𝐸𝑖) = (𝐸𝑀))
64 eqidd 2731 . . . . . . . . . 10 (𝜑 → (𝐸𝑀) = (𝐸𝑀))
6560, 63, 643eqtrrd 2770 . . . . . . . . 9 (𝜑 → (𝐸𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
6665adantr 480 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐸𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
67 fveq2 6861 . . . . . . . . 9 (𝑛 = 𝑀 → (𝐸𝑛) = (𝐸𝑀))
6867adantl 481 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐸𝑛) = (𝐸𝑀))
69 caratheodorylem1.g . . . . . . . . . 10 𝐺 = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
70 oveq2 7398 . . . . . . . . . . 11 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
7170iuneq1d 4986 . . . . . . . . . 10 (𝑛 = 𝑀 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
72 ovex 7423 . . . . . . . . . . . 12 (𝑀...𝑀) ∈ V
73 fvex 6874 . . . . . . . . . . . 12 (𝐸𝑖) ∈ V
7472, 73iunex 7950 . . . . . . . . . . 11 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) ∈ V
7574a1i 11 . . . . . . . . . 10 (𝜑 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖) ∈ V)
7669, 71, 48, 75fvmptd3 6994 . . . . . . . . 9 (𝜑 → (𝐺𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
7776adantr 480 . . . . . . . 8 ((𝜑𝑛 = 𝑀) → (𝐺𝑀) = 𝑖 ∈ (𝑀...𝑀)(𝐸𝑖))
7866, 68, 773eqtr4d 2775 . . . . . . 7 ((𝜑𝑛 = 𝑀) → (𝐸𝑛) = (𝐺𝑀))
7978fveq2d 6865 . . . . . 6 ((𝜑𝑛 = 𝑀) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐺𝑀)))
80 snidg 4627 . . . . . . 7 (𝑀𝑍𝑀 ∈ {𝑀})
8148, 80syl 17 . . . . . 6 (𝜑𝑀 ∈ {𝑀})
82 fvexd 6876 . . . . . 6 (𝜑 → (𝑂‘(𝐺𝑀)) ∈ V)
8359, 79, 81, 82fvmptd 6978 . . . . 5 (𝜑 → ((𝑛 ∈ {𝑀} ↦ (𝑂‘(𝐸𝑛)))‘𝑀) = (𝑂‘(𝐺𝑀)))
8434, 58, 833eqtrrd 2770 . . . 4 (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛)))))
8584a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑂‘(𝐺𝑀)) = (Σ^‘(𝑛 ∈ (𝑀...𝑀) ↦ (𝑂‘(𝐸𝑛))))))
86 simp3 1138 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → 𝜑)
87 simp1 1136 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → 𝑖 ∈ (𝑀..^𝑁))
88 id 22 . . . . . . 7 ((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))))
8988imp 406 . . . . . 6 (((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
90893adant1 1130 . . . . 5 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
91 elfzoel1 13625 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
92 elfzoelz 13627 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℤ)
9392peano2zd 12648 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ ℤ)
9491zred 12645 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ)
9593zred 12645 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ ℝ)
9692zred 12645 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ ℝ)
97 elfzole1 13635 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑀𝑖)
9896ltp1d 12120 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 < (𝑖 + 1))
9994, 96, 95, 97, 98lelttrd 11339 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 < (𝑖 + 1))
10094, 95, 99ltled 11329 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → 𝑀 ≤ (𝑖 + 1))
101 leid 11277 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ ℝ → (𝑖 + 1) ≤ (𝑖 + 1))
10295, 101syl 17 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ≤ (𝑖 + 1))
10391, 93, 93, 100, 102elfzd 13483 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑀..^𝑁) → (𝑖 + 1) ∈ (𝑀...(𝑖 + 1)))
104103adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (𝑀...(𝑖 + 1)))
105 fveq2 6861 . . . . . . . . . . . . 13 (𝑗 = (𝑖 + 1) → (𝐸𝑗) = (𝐸‘(𝑖 + 1)))
106105ssiun2s 5015 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (𝑀...(𝑖 + 1)) → (𝐸‘(𝑖 + 1)) ⊆ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
107104, 106syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
108 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝐸𝑖) = (𝐸𝑗))
109108cbviunv 5007 . . . . . . . . . . . . . . 15 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖) = 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗)
110109mpteq2i 5206 . . . . . . . . . . . . . 14 (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)) = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗))
11169, 110eqtri 2753 . . . . . . . . . . . . 13 𝐺 = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗))
112 oveq2 7398 . . . . . . . . . . . . . 14 (𝑛 = (𝑖 + 1) → (𝑀...𝑛) = (𝑀...(𝑖 + 1)))
113112iuneq1d 4986 . . . . . . . . . . . . 13 (𝑛 = (𝑖 + 1) → 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗) = 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
11430adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
11592adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℤ)
116115peano2zd 12648 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ ℤ)
117114zred 12645 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
118116zred 12645 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ ℝ)
119115zred 12645 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ ℝ)
12097adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀𝑖)
121119ltp1d 12120 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 < (𝑖 + 1))
122117, 119, 118, 120, 121lelttrd 11339 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 < (𝑖 + 1))
123117, 118, 122ltled 11329 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑀 ≤ (𝑖 + 1))
124114, 116, 1233jca 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1)))
125 eluz2 12806 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑖 + 1) ∈ ℤ ∧ 𝑀 ≤ (𝑖 + 1)))
126124, 125sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (ℤ𝑀))
12747eqcomi 2739 . . . . . . . . . . . . . 14 (ℤ𝑀) = 𝑍
128126, 127eleqtrdi 2839 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ 𝑍)
129 ovex 7423 . . . . . . . . . . . . . . 15 (𝑀...(𝑖 + 1)) ∈ V
130 fvex 6874 . . . . . . . . . . . . . . 15 (𝐸𝑗) ∈ V
131129, 130iunex 7950 . . . . . . . . . . . . . 14 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ∈ V
132131a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ∈ V)
133111, 113, 128, 132fvmptd3 6994 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) = 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗))
134133eqcomd 2736 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) = (𝐺‘(𝑖 + 1)))
135107, 134sseqtrd 3986 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)))
136 sseqin2 4189 . . . . . . . . . . 11 ((𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)) ↔ ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
137136biimpi 216 . . . . . . . . . 10 ((𝐸‘(𝑖 + 1)) ⊆ (𝐺‘(𝑖 + 1)) → ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
138135, 137syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1))) = (𝐸‘(𝑖 + 1)))
139138fveq2d 6865 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) = (𝑂‘(𝐸‘(𝑖 + 1))))
140 nfcv 2892 . . . . . . . . . . . . 13 𝑗(𝐸‘(𝑖 + 1))
141 elfzouz 13631 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝑀..^𝑁) → 𝑖 ∈ (ℤ𝑀))
142141adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖 ∈ (ℤ𝑀))
143140, 142, 105iunp1 45067 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))))
144133, 143eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))))
145144difeq1d 4091 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
146 caratheodorylem1.dj . . . . . . . . . . . . . . 15 (𝜑Disj 𝑛𝑍 (𝐸𝑛))
147 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐸𝑛) = (𝐸𝑗))
148147cbvdisjv 5088 . . . . . . . . . . . . . . 15 (Disj 𝑛𝑍 (𝐸𝑛) ↔ Disj 𝑗𝑍 (𝐸𝑗))
149146, 148sylib 218 . . . . . . . . . . . . . 14 (𝜑Disj 𝑗𝑍 (𝐸𝑗))
150149adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → Disj 𝑗𝑍 (𝐸𝑗))
151 fzssuz 13533 . . . . . . . . . . . . . . 15 (𝑀...𝑖) ⊆ (ℤ𝑀)
152151, 127sseqtri 3998 . . . . . . . . . . . . . 14 (𝑀...𝑖) ⊆ 𝑍
153152a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑀...𝑖) ⊆ 𝑍)
154 fzp1nel 13579 . . . . . . . . . . . . . . . 16 ¬ (𝑖 + 1) ∈ (𝑀...𝑖)
155154a1i 11 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝑀..^𝑁) → ¬ (𝑖 + 1) ∈ (𝑀...𝑖))
156155adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ¬ (𝑖 + 1) ∈ (𝑀...𝑖))
157128, 156eldifd 3928 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑖 + 1) ∈ (𝑍 ∖ (𝑀...𝑖)))
158150, 153, 157, 105disjiun2 45059 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∩ (𝐸‘(𝑖 + 1))) = ∅)
159 undif4 4433 . . . . . . . . . . . 12 (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∩ (𝐸‘(𝑖 + 1))) = ∅ → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
160158, 159syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))))
161160eqcomd 2736 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ (𝐸‘(𝑖 + 1))) ∖ (𝐸‘(𝑖 + 1))) = ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))))
162 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝜑)
163142, 127eleqtrdi 2839 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑖𝑍)
164111a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝐺 = (𝑛𝑍 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗)))
165 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → 𝑛 = 𝑖)
166165oveq2d 7406 . . . . . . . . . . . . . . . 16 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → (𝑀...𝑛) = (𝑀...𝑖))
167166iuneq1d 4986 . . . . . . . . . . . . . . 15 (((𝜑𝑖𝑍) ∧ 𝑛 = 𝑖) → 𝑗 ∈ (𝑀...𝑛)(𝐸𝑗) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
168 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑖𝑍)
169 ovex 7423 . . . . . . . . . . . . . . . . 17 (𝑀...𝑖) ∈ V
170169, 130iunex 7950 . . . . . . . . . . . . . . . 16 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∈ V
171170a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∈ V)
172164, 167, 168, 171fvmptd 6978 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐺𝑖) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
173162, 163, 172syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺𝑖) = 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗))
174173eqcomd 2736 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) = (𝐺𝑖))
175 difid 4342 . . . . . . . . . . . . 13 ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ∅
176175a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = ∅)
177174, 176uneq12d 4135 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = ((𝐺𝑖) ∪ ∅))
178 un0 4360 . . . . . . . . . . . 12 ((𝐺𝑖) ∪ ∅) = (𝐺𝑖)
179178a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺𝑖) ∪ ∅) = (𝐺𝑖))
180177, 179eqtrd 2765 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ∪ ((𝐸‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (𝐺𝑖))
181145, 161, 1803eqtrd 2769 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))) = (𝐺𝑖))
182181fveq2d 6865 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1)))) = (𝑂‘(𝐺𝑖)))
183139, 182oveq12d 7408 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
1841833adant3 1132 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
18535adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑂 ∈ OutMeas)
18641adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝐸:𝑍𝑆)
187186, 128ffvelcdmd 7060 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ∈ 𝑆)
188 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝜑)
18991adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑀 ∈ ℤ)
190 elfzelz 13492 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑀...(𝑖 + 1)) → 𝑗 ∈ ℤ)
191190adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ ℤ)
192 elfzle1 13495 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑀...(𝑖 + 1)) → 𝑀𝑗)
193192adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑀𝑗)
194189, 191, 1933jca 1128 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀𝑗))
195 eluz2 12806 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀𝑗))
196194, 195sylibr 234 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗 ∈ (ℤ𝑀))
197196, 127eleqtrdi 2839 . . . . . . . . . . . . . 14 ((𝑖 ∈ (𝑀..^𝑁) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗𝑍)
198197adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → 𝑗𝑍)
19935, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ⊆ dom 𝑂)
200199adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝑆 ⊆ dom 𝑂)
20141ffvelcdmda 7059 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ 𝑆)
202200, 201sseldd 3950 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ dom 𝑂)
203 elssuni 4904 . . . . . . . . . . . . . 14 ((𝐸𝑗) ∈ dom 𝑂 → (𝐸𝑗) ⊆ dom 𝑂)
204202, 203syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝐸𝑗) ⊆ dom 𝑂)
205188, 198, 204syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑗 ∈ (𝑀...(𝑖 + 1))) → (𝐸𝑗) ⊆ dom 𝑂)
206205ralrimiva 3126 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ∀𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
207 iunss 5012 . . . . . . . . . . 11 ( 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂 ↔ ∀𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
208206, 207sylibr 234 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...(𝑖 + 1))(𝐸𝑗) ⊆ dom 𝑂)
209133, 208eqsstrd 3984 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑖 + 1)) ⊆ dom 𝑂)
210185, 38, 37, 187, 209caragensplit 46505 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))) = (𝑂‘(𝐺‘(𝑖 + 1))))
211210eqcomd 2736 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐺‘(𝑖 + 1))) = ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))))
2122113adant3 1132 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝑂‘(𝐺‘(𝑖 + 1))) = ((𝑂‘((𝐺‘(𝑖 + 1)) ∩ (𝐸‘(𝑖 + 1)))) +𝑒 (𝑂‘((𝐺‘(𝑖 + 1)) ∖ (𝐸‘(𝑖 + 1))))))
213185adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝑂 ∈ OutMeas)
214162adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝜑)
215 elfzuz 13488 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀...(𝑖 + 1)) → 𝑛 ∈ (ℤ𝑀))
216215, 127eleqtrdi 2839 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...(𝑖 + 1)) → 𝑛𝑍)
217216adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → 𝑛𝑍)
21841, 199fssd 6708 . . . . . . . . . . . . 13 (𝜑𝐸:𝑍⟶dom 𝑂)
219218ffvelcdmda 7059 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑂)
220219, 53syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ dom 𝑂)
221214, 217, 220syl2anc 584 . . . . . . . . . 10 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → (𝐸𝑛) ⊆ dom 𝑂)
222213, 37, 221omecl 46508 . . . . . . . . 9 (((𝜑𝑖 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑖 + 1))) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
223 2fveq3 6866 . . . . . . . . 9 (𝑛 = (𝑖 + 1) → (𝑂‘(𝐸𝑛)) = (𝑂‘(𝐸‘(𝑖 + 1))))
224142, 222, 223sge0p1 46419 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
2252243adant3 1132 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
226 id 22 . . . . . . . . . 10 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))))
227226eqcomd 2736 . . . . . . . . 9 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) = (𝑂‘(𝐺𝑖)))
228227oveq1d 7405 . . . . . . . 8 ((𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) → ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
2292283ad2ant3 1135 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛)))) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))))
230 simpl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...𝑖)) → 𝜑)
231152sseli 3945 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀...𝑖) → 𝑗𝑍)
232231adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...𝑖)) → 𝑗𝑍)
233230, 232, 204syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀...𝑖)) → (𝐸𝑗) ⊆ dom 𝑂)
234233adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (𝑀...𝑖)) → (𝐸𝑗) ⊆ dom 𝑂)
235234ralrimiva 3126 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ∀𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
236 iunss 5012 . . . . . . . . . . . . 13 ( 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂 ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
237235, 236sylibr 234 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → 𝑗 ∈ (𝑀...𝑖)(𝐸𝑗) ⊆ dom 𝑂)
238172, 237eqsstrd 3984 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐺𝑖) ⊆ dom 𝑂)
239162, 163, 238syl2anc 584 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐺𝑖) ⊆ dom 𝑂)
240185, 37, 239omexrcl 46512 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐺𝑖)) ∈ ℝ*)
241107, 208sstrd 3960 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝐸‘(𝑖 + 1)) ⊆ dom 𝑂)
242185, 37, 241omexrcl 46512 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → (𝑂‘(𝐸‘(𝑖 + 1))) ∈ ℝ*)
243240, 242xaddcomd 45327 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑀..^𝑁)) → ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
2442433adant3 1132 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → ((𝑂‘(𝐺𝑖)) +𝑒 (𝑂‘(𝐸‘(𝑖 + 1)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
245225, 229, 2443eqtrd 2769 . . . . . 6 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))) = ((𝑂‘(𝐸‘(𝑖 + 1))) +𝑒 (𝑂‘(𝐺𝑖))))
246184, 212, 2453eqtr4d 2775 . . . . 5 ((𝜑𝑖 ∈ (𝑀..^𝑁) ∧ (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
24786, 87, 90, 246syl3anc 1373 . . . 4 ((𝑖 ∈ (𝑀..^𝑁) ∧ (𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) ∧ 𝜑) → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))
2482473exp 1119 . . 3 (𝑖 ∈ (𝑀..^𝑁) → ((𝜑 → (𝑂‘(𝐺𝑖)) = (Σ^‘(𝑛 ∈ (𝑀...𝑖) ↦ (𝑂‘(𝐸𝑛))))) → (𝜑 → (𝑂‘(𝐺‘(𝑖 + 1))) = (Σ^‘(𝑛 ∈ (𝑀...(𝑖 + 1)) ↦ (𝑂‘(𝐸𝑛)))))))
24910, 16, 22, 28, 85, 248fzind2 13753 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛))))))
2503, 4, 249sylc 65 1 (𝜑 → (𝑂‘(𝐺𝑁)) = (Σ^‘(𝑛 ∈ (𝑀...𝑁) ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   cuni 4874   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  +∞cpnf 11212  cle 11216  cz 12536  cuz 12800   +𝑒 cxad 13077  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  Σ^csumge0 46367  OutMeascome 46494  CaraGenccaragen 46496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-sumge0 46368  df-ome 46495  df-caragen 46497
This theorem is referenced by:  caratheodorylem2  46532
  Copyright terms: Public domain W3C validator