![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
Ref | Expression |
---|---|
iunxsn.1 | ⊢ 𝐴 ∈ V |
iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | iunxsng 5113 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-sn 4649 df-iun 5017 |
This theorem is referenced by: iunsuc 6480 funopsn 7182 fparlem3 8155 fparlem4 8156 iunfi 9411 kmlem11 10230 ackbij1lem8 10295 dfid6 15077 fsum2dlem 15818 fsumiun 15869 fprod2dlem 16028 prmreclem4 16966 fiuncmp 23433 ovolfiniun 25555 finiunmbl 25598 volfiniun 25601 voliunlem1 25604 iuninc 32583 cvmliftlem10 35262 mrsubvrs 35490 dfrcl4 43638 iunrelexp0 43664 corclrcl 43669 cotrcltrcl 43687 trclfvdecomr 43690 dfrtrcl4 43700 corcltrcl 43701 cotrclrcl 43704 |
Copyright terms: Public domain | W3C validator |