| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
| Ref | Expression |
|---|---|
| iunxsn.1 | ⊢ 𝐴 ∈ V |
| iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | iunxsng 5042 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3438 {csn 4577 ∪ ciun 4943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-v 3440 df-sn 4578 df-iun 4945 |
| This theorem is referenced by: iunsuc 6401 funopsn 7090 fparlem3 8053 fparlem4 8054 iunfi 9237 kmlem11 10062 ackbij1lem8 10127 dfid6 14945 fsum2dlem 15687 fsumiun 15738 fprod2dlem 15897 prmreclem4 16841 fiuncmp 23329 ovolfiniun 25439 finiunmbl 25482 volfiniun 25485 voliunlem1 25488 iuninc 32551 cvmliftlem10 35349 mrsubvrs 35577 dfrcl4 43783 iunrelexp0 43809 corclrcl 43814 cotrcltrcl 43832 trclfvdecomr 43835 dfrtrcl4 43845 corcltrcl 43846 cotrclrcl 43849 imaf1hom 49223 |
| Copyright terms: Public domain | W3C validator |