| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
| Ref | Expression |
|---|---|
| iunxsn.1 | ⊢ 𝐴 ∈ V |
| iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | iunxsng 5036 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 {csn 4574 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3436 df-sn 4575 df-iun 4941 |
| This theorem is referenced by: iunsuc 6389 funopsn 7076 fparlem3 8039 fparlem4 8040 iunfi 9222 kmlem11 10044 ackbij1lem8 10109 dfid6 14927 fsum2dlem 15669 fsumiun 15720 fprod2dlem 15879 prmreclem4 16823 fiuncmp 23312 ovolfiniun 25422 finiunmbl 25465 volfiniun 25468 voliunlem1 25471 iuninc 32530 cvmliftlem10 35306 mrsubvrs 35534 dfrcl4 43688 iunrelexp0 43714 corclrcl 43719 cotrcltrcl 43737 trclfvdecomr 43740 dfrtrcl4 43750 corcltrcl 43751 cotrclrcl 43754 imaf1hom 49119 |
| Copyright terms: Public domain | W3C validator |