| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
| Ref | Expression |
|---|---|
| iunxsn.1 | ⊢ 𝐴 ∈ V |
| iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | iunxsng 5066 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-sn 4602 df-iun 4969 |
| This theorem is referenced by: iunsuc 6439 funopsn 7138 fparlem3 8113 fparlem4 8114 iunfi 9355 kmlem11 10175 ackbij1lem8 10240 dfid6 15047 fsum2dlem 15786 fsumiun 15837 fprod2dlem 15996 prmreclem4 16939 fiuncmp 23342 ovolfiniun 25454 finiunmbl 25497 volfiniun 25500 voliunlem1 25503 iuninc 32541 cvmliftlem10 35316 mrsubvrs 35544 dfrcl4 43700 iunrelexp0 43726 corclrcl 43731 cotrcltrcl 43749 trclfvdecomr 43752 dfrtrcl4 43762 corcltrcl 43763 cotrclrcl 43766 imaf1hom 49067 |
| Copyright terms: Public domain | W3C validator |