![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
Ref | Expression |
---|---|
iunxsn.1 | ⊢ 𝐴 ∈ V |
iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | iunxsng 5094 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 {csn 4629 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-sn 4630 df-iun 5000 |
This theorem is referenced by: iunsuc 6450 funopsn 7146 fparlem3 8100 fparlem4 8101 iunfi 9340 kmlem11 10155 ackbij1lem8 10222 dfid6 14975 fsum2dlem 15716 fsumiun 15767 fprod2dlem 15924 prmreclem4 16852 fiuncmp 22908 ovolfiniun 25018 finiunmbl 25061 volfiniun 25064 voliunlem1 25067 iuninc 31823 cvmliftlem10 34316 mrsubvrs 34544 dfrcl4 42475 iunrelexp0 42501 corclrcl 42506 cotrcltrcl 42524 trclfvdecomr 42527 dfrtrcl4 42537 corcltrcl 42538 cotrclrcl 42541 |
Copyright terms: Public domain | W3C validator |