| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
| Ref | Expression |
|---|---|
| iunxsn.1 | ⊢ 𝐴 ∈ V |
| iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | iunxsng 5057 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-sn 4593 df-iun 4960 |
| This theorem is referenced by: iunsuc 6422 funopsn 7123 fparlem3 8096 fparlem4 8097 iunfi 9301 kmlem11 10121 ackbij1lem8 10186 dfid6 15001 fsum2dlem 15743 fsumiun 15794 fprod2dlem 15953 prmreclem4 16897 fiuncmp 23298 ovolfiniun 25409 finiunmbl 25452 volfiniun 25455 voliunlem1 25458 iuninc 32496 cvmliftlem10 35288 mrsubvrs 35516 dfrcl4 43672 iunrelexp0 43698 corclrcl 43703 cotrcltrcl 43721 trclfvdecomr 43724 dfrtrcl4 43734 corcltrcl 43735 cotrclrcl 43738 imaf1hom 49101 |
| Copyright terms: Public domain | W3C validator |