Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
Ref | Expression |
---|---|
iunxsn.1 | ⊢ 𝐴 ∈ V |
iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | iunxsng 5023 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {csn 4566 ∪ ciun 4929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-sn 4567 df-iun 4931 |
This theorem is referenced by: iunsuc 6345 funopsn 7014 fparlem3 7938 fparlem4 7939 iunfi 9068 kmlem11 9900 ackbij1lem8 9967 dfid6 14720 fsum2dlem 15463 fsumiun 15514 fprod2dlem 15671 prmreclem4 16601 fiuncmp 22536 ovolfiniun 24646 finiunmbl 24689 volfiniun 24692 voliunlem1 24695 iuninc 30879 cvmliftlem10 33235 mrsubvrs 33463 dfrcl4 41237 iunrelexp0 41263 corclrcl 41268 cotrcltrcl 41286 trclfvdecomr 41289 dfrtrcl4 41299 corcltrcl 41300 cotrclrcl 41303 |
Copyright terms: Public domain | W3C validator |