Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
Ref | Expression |
---|---|
iunxsn.1 | ⊢ 𝐴 ∈ V |
iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | iunxsng 5019 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-sn 4562 df-iun 4926 |
This theorem is referenced by: iunsuc 6348 funopsn 7020 fparlem3 7954 fparlem4 7955 iunfi 9107 kmlem11 9916 ackbij1lem8 9983 dfid6 14739 fsum2dlem 15482 fsumiun 15533 fprod2dlem 15690 prmreclem4 16620 fiuncmp 22555 ovolfiniun 24665 finiunmbl 24708 volfiniun 24711 voliunlem1 24714 iuninc 30900 cvmliftlem10 33256 mrsubvrs 33484 dfrcl4 41284 iunrelexp0 41310 corclrcl 41315 cotrcltrcl 41333 trclfvdecomr 41336 dfrtrcl4 41346 corcltrcl 41347 cotrclrcl 41350 |
Copyright terms: Public domain | W3C validator |