Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuct0 Structured version   Visualization version   GIF version

Theorem onsuct0 33784
Description: A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.)
Assertion
Ref Expression
onsuct0 (𝐴 ∈ On → suc 𝐴 ∈ Kol2)

Proof of Theorem onsuct0
Dummy variables 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 6195 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 df-ral 3143 . . . . . 6 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) ↔ ∀𝑜(𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)))
3 ordelon 6209 . . . . . . . . . . 11 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
4 ordelon 6209 . . . . . . . . . . 11 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
53, 4anim12dan 620 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 ∈ On ∧ 𝑦 ∈ On))
6 ordsuc 7523 . . . . . . . . . . . 12 (Ord 𝐴 ↔ Ord suc 𝐴)
7 ordelon 6209 . . . . . . . . . . . . 13 ((Ord suc 𝐴𝑜 ∈ suc 𝐴) → 𝑜 ∈ On)
87ex 415 . . . . . . . . . . . 12 (Ord suc 𝐴 → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
96, 8sylbi 219 . . . . . . . . . . 11 (Ord 𝐴 → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
109adantr 483 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
11 notbi 321 . . . . . . . . . . . 12 ((𝑥𝑜𝑦𝑜) ↔ (¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜))
12 ontri1 6219 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (𝑜𝑥 ↔ ¬ 𝑥𝑜))
13 onsssuc 6272 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (𝑜𝑥𝑜 ∈ suc 𝑥))
1412, 13bitr3d 283 . . . . . . . . . . . . . . 15 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥𝑜𝑜 ∈ suc 𝑥))
1514adantrr 715 . . . . . . . . . . . . . 14 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → (¬ 𝑥𝑜𝑜 ∈ suc 𝑥))
16 ontri1 6219 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (𝑜𝑦 ↔ ¬ 𝑦𝑜))
17 onsssuc 6272 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (𝑜𝑦𝑜 ∈ suc 𝑦))
1816, 17bitr3d 283 . . . . . . . . . . . . . . 15 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (¬ 𝑦𝑜𝑜 ∈ suc 𝑦))
1918adantrl 714 . . . . . . . . . . . . . 14 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → (¬ 𝑦𝑜𝑜 ∈ suc 𝑦))
2015, 19bibi12d 348 . . . . . . . . . . . . 13 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → ((¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2120ancoms 461 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2211, 21syl5bb 285 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((𝑥𝑜𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2322biimpd 231 . . . . . . . . . 10 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((𝑥𝑜𝑦𝑜) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
245, 10, 23syl6an 682 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑜 ∈ suc 𝐴 → ((𝑥𝑜𝑦𝑜) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))))
2524a2d 29 . . . . . . . 8 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → (𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))))
26 ordelss 6201 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑥𝐴) → 𝑥𝐴)
27 ordelord 6207 . . . . . . . . . . . . . . 15 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
28 ordsucsssuc 7532 . . . . . . . . . . . . . . . 16 ((Ord 𝑥 ∧ Ord 𝐴) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
2928ancoms 461 . . . . . . . . . . . . . . 15 ((Ord 𝐴 ∧ Ord 𝑥) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
3027, 29syldan 593 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑥𝐴) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
3126, 30mpbid 234 . . . . . . . . . . . . 13 ((Ord 𝐴𝑥𝐴) → suc 𝑥 ⊆ suc 𝐴)
3231ssneld 3968 . . . . . . . . . . . 12 ((Ord 𝐴𝑥𝐴) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑥))
3332adantrr 715 . . . . . . . . . . 11 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑥))
34 ordelss 6201 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑦𝐴) → 𝑦𝐴)
35 ordelord 6207 . . . . . . . . . . . . . . 15 ((Ord 𝐴𝑦𝐴) → Ord 𝑦)
36 ordsucsssuc 7532 . . . . . . . . . . . . . . . 16 ((Ord 𝑦 ∧ Ord 𝐴) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3736ancoms 461 . . . . . . . . . . . . . . 15 ((Ord 𝐴 ∧ Ord 𝑦) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3835, 37syldan 593 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑦𝐴) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3934, 38mpbid 234 . . . . . . . . . . . . 13 ((Ord 𝐴𝑦𝐴) → suc 𝑦 ⊆ suc 𝐴)
4039ssneld 3968 . . . . . . . . . . . 12 ((Ord 𝐴𝑦𝐴) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑦))
4140adantrl 714 . . . . . . . . . . 11 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑦))
4233, 41jcad 515 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → (¬ 𝑜 ∈ suc 𝑥 ∧ ¬ 𝑜 ∈ suc 𝑦)))
43 pm5.21 822 . . . . . . . . . 10 ((¬ 𝑜 ∈ suc 𝑥 ∧ ¬ 𝑜 ∈ suc 𝑦) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))
4442, 43syl6 35 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
45 idd 24 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4644, 45jad 189 . . . . . . . 8 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4725, 46syld 47 . . . . . . 7 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4847alimdv 1913 . . . . . 6 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜(𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
492, 48syl5bi 244 . . . . 5 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
50 dfcleq 2815 . . . . . . 7 (suc 𝑥 = suc 𝑦 ↔ ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))
51 suc11 6288 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
5250, 51syl5bbr 287 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) ↔ 𝑥 = 𝑦))
535, 52syl 17 . . . . 5 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) ↔ 𝑥 = 𝑦))
5449, 53sylibd 241 . . . 4 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
5554ralrimivva 3191 . . 3 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
561, 55syl 17 . 2 (𝐴 ∈ On → ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
57 onsuctopon 33777 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))
58 ist0-2 21946 . . 3 (suc 𝐴 ∈ (TopOn‘𝐴) → (suc 𝐴 ∈ Kol2 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
5957, 58syl 17 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ Kol2 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
6056, 59mpbird 259 1 (𝐴 ∈ On → suc 𝐴 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wcel 2110  wral 3138  wss 3935  Ord word 6184  Oncon0 6185  suc csuc 6187  cfv 6349  TopOnctopon 21512  Kol2ct0 21908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-ord 6188  df-on 6189  df-suc 6191  df-iota 6308  df-fun 6351  df-fv 6357  df-topgen 16711  df-top 21496  df-topon 21513  df-bases 21548  df-t0 21915
This theorem is referenced by:  ordtopt0  33785
  Copyright terms: Public domain W3C validator