Step | Hyp | Ref
| Expression |
1 | | eloni 6261 |
. . 3
⊢ (𝐴 ∈ On → Ord 𝐴) |
2 | | df-ral 3068 |
. . . . . 6
⊢
(∀𝑜 ∈
suc 𝐴(𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ∀𝑜(𝑜 ∈ suc 𝐴 → (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
3 | | ordelon 6275 |
. . . . . . . . . . 11
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
4 | | ordelon 6275 |
. . . . . . . . . . 11
⊢ ((Ord
𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
5 | 3, 4 | anim12dan 618 |
. . . . . . . . . 10
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∈ On ∧ 𝑦 ∈ On)) |
6 | | ordsuc 7636 |
. . . . . . . . . . . 12
⊢ (Ord
𝐴 ↔ Ord suc 𝐴) |
7 | | ordelon 6275 |
. . . . . . . . . . . . 13
⊢ ((Ord suc
𝐴 ∧ 𝑜 ∈ suc 𝐴) → 𝑜 ∈ On) |
8 | 7 | ex 412 |
. . . . . . . . . . . 12
⊢ (Ord suc
𝐴 → (𝑜 ∈ suc 𝐴 → 𝑜 ∈ On)) |
9 | 6, 8 | sylbi 216 |
. . . . . . . . . . 11
⊢ (Ord
𝐴 → (𝑜 ∈ suc 𝐴 → 𝑜 ∈ On)) |
10 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑜 ∈ suc 𝐴 → 𝑜 ∈ On)) |
11 | | notbi 318 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ (¬ 𝑥 ∈ 𝑜 ↔ ¬ 𝑦 ∈ 𝑜)) |
12 | | ontri1 6285 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (𝑜 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑜)) |
13 | | onsssuc 6338 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (𝑜 ⊆ 𝑥 ↔ 𝑜 ∈ suc 𝑥)) |
14 | 12, 13 | bitr3d 280 |
. . . . . . . . . . . . . . 15
⊢ ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 ∈ 𝑜 ↔ 𝑜 ∈ suc 𝑥)) |
15 | 14 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → (¬ 𝑥 ∈ 𝑜 ↔ 𝑜 ∈ suc 𝑥)) |
16 | | ontri1 6285 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (𝑜 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑜)) |
17 | | onsssuc 6338 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (𝑜 ⊆ 𝑦 ↔ 𝑜 ∈ suc 𝑦)) |
18 | 16, 17 | bitr3d 280 |
. . . . . . . . . . . . . . 15
⊢ ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (¬ 𝑦 ∈ 𝑜 ↔ 𝑜 ∈ suc 𝑦)) |
19 | 18 | adantrl 712 |
. . . . . . . . . . . . . 14
⊢ ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → (¬ 𝑦 ∈ 𝑜 ↔ 𝑜 ∈ suc 𝑦)) |
20 | 15, 19 | bibi12d 345 |
. . . . . . . . . . . . 13
⊢ ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → ((¬
𝑥 ∈ 𝑜 ↔ ¬ 𝑦 ∈ 𝑜) ↔ (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
21 | 20 | ancoms 458 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((¬ 𝑥 ∈ 𝑜 ↔ ¬ 𝑦 ∈ 𝑜) ↔ (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
22 | 11, 21 | syl5bb 282 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
23 | 22 | biimpd 228 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
24 | 5, 10, 23 | syl6an 680 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑜 ∈ suc 𝐴 → ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦)))) |
25 | 24 | a2d 29 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) → (𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦)))) |
26 | | ordelss 6267 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐴) |
27 | | ordelord 6273 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) |
28 | | ordsucsssuc 7645 |
. . . . . . . . . . . . . . . 16
⊢ ((Ord
𝑥 ∧ Ord 𝐴) → (𝑥 ⊆ 𝐴 ↔ suc 𝑥 ⊆ suc 𝐴)) |
29 | 28 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
𝐴 ∧ Ord 𝑥) → (𝑥 ⊆ 𝐴 ↔ suc 𝑥 ⊆ suc 𝐴)) |
30 | 27, 29 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ⊆ 𝐴 ↔ suc 𝑥 ⊆ suc 𝐴)) |
31 | 26, 30 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → suc 𝑥 ⊆ suc 𝐴) |
32 | 31 | ssneld 3919 |
. . . . . . . . . . . 12
⊢ ((Ord
𝐴 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑥)) |
33 | 32 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑥)) |
34 | | ordelss 6267 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ⊆ 𝐴) |
35 | | ordelord 6273 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
𝐴 ∧ 𝑦 ∈ 𝐴) → Ord 𝑦) |
36 | | ordsucsssuc 7645 |
. . . . . . . . . . . . . . . 16
⊢ ((Ord
𝑦 ∧ Ord 𝐴) → (𝑦 ⊆ 𝐴 ↔ suc 𝑦 ⊆ suc 𝐴)) |
37 | 36 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
𝐴 ∧ Ord 𝑦) → (𝑦 ⊆ 𝐴 ↔ suc 𝑦 ⊆ suc 𝐴)) |
38 | 35, 37 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦 ⊆ 𝐴 ↔ suc 𝑦 ⊆ suc 𝐴)) |
39 | 34, 38 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((Ord
𝐴 ∧ 𝑦 ∈ 𝐴) → suc 𝑦 ⊆ suc 𝐴) |
40 | 39 | ssneld 3919 |
. . . . . . . . . . . 12
⊢ ((Ord
𝐴 ∧ 𝑦 ∈ 𝐴) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑦)) |
41 | 40 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑦)) |
42 | 33, 41 | jcad 512 |
. . . . . . . . . 10
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → (¬ 𝑜 ∈ suc 𝑥 ∧ ¬ 𝑜 ∈ suc 𝑦))) |
43 | | pm5.21 821 |
. . . . . . . . . 10
⊢ ((¬
𝑜 ∈ suc 𝑥 ∧ ¬ 𝑜 ∈ suc 𝑦) → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦)) |
44 | 42, 43 | syl6 35 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
45 | | idd 24 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦) → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
46 | 44, 45 | jad 187 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦)) → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
47 | 25, 46 | syld 47 |
. . . . . . 7
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) → (𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
48 | 47 | alimdv 1920 |
. . . . . 6
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (∀𝑜(𝑜 ∈ suc 𝐴 → (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) → ∀𝑜(𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
49 | 2, 48 | syl5bi 241 |
. . . . 5
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (∀𝑜 ∈ suc 𝐴(𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → ∀𝑜(𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦))) |
50 | | dfcleq 2731 |
. . . . . . 7
⊢ (suc
𝑥 = suc 𝑦 ↔ ∀𝑜(𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦)) |
51 | | suc11 6354 |
. . . . . . 7
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦)) |
52 | 50, 51 | bitr3id 284 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) →
(∀𝑜(𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦) ↔ 𝑥 = 𝑦)) |
53 | 5, 52 | syl 17 |
. . . . 5
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (∀𝑜(𝑜 ∈ suc 𝑥 ↔ 𝑜 ∈ suc 𝑦) ↔ 𝑥 = 𝑦)) |
54 | 49, 53 | sylibd 238 |
. . . 4
⊢ ((Ord
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (∀𝑜 ∈ suc 𝐴(𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
55 | 54 | ralrimivva 3114 |
. . 3
⊢ (Ord
𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (∀𝑜 ∈ suc 𝐴(𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
56 | 1, 55 | syl 17 |
. 2
⊢ (𝐴 ∈ On → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (∀𝑜 ∈ suc 𝐴(𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)) |
57 | | onsuctopon 34550 |
. . 3
⊢ (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴)) |
58 | | ist0-2 22403 |
. . 3
⊢ (suc
𝐴 ∈ (TopOn‘𝐴) → (suc 𝐴 ∈ Kol2 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (∀𝑜 ∈ suc 𝐴(𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
59 | 57, 58 | syl 17 |
. 2
⊢ (𝐴 ∈ On → (suc 𝐴 ∈ Kol2 ↔
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (∀𝑜 ∈ suc 𝐴(𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
60 | 56, 59 | mpbird 256 |
1
⊢ (𝐴 ∈ On → suc 𝐴 ∈ Kol2) |