Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuct0 Structured version   Visualization version   GIF version

Theorem onsuct0 36442
Description: A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.)
Assertion
Ref Expression
onsuct0 (𝐴 ∈ On → suc 𝐴 ∈ Kol2)

Proof of Theorem onsuct0
Dummy variables 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 6394 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 df-ral 3062 . . . . . 6 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) ↔ ∀𝑜(𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)))
3 ordelon 6408 . . . . . . . . . . 11 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
4 ordelon 6408 . . . . . . . . . . 11 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
53, 4anim12dan 619 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 ∈ On ∧ 𝑦 ∈ On))
6 ordsuc 7833 . . . . . . . . . . . 12 (Ord 𝐴 ↔ Ord suc 𝐴)
7 ordelon 6408 . . . . . . . . . . . . 13 ((Ord suc 𝐴𝑜 ∈ suc 𝐴) → 𝑜 ∈ On)
87ex 412 . . . . . . . . . . . 12 (Ord suc 𝐴 → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
96, 8sylbi 217 . . . . . . . . . . 11 (Ord 𝐴 → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
109adantr 480 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
11 notbi 319 . . . . . . . . . . . 12 ((𝑥𝑜𝑦𝑜) ↔ (¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜))
12 ontri1 6418 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (𝑜𝑥 ↔ ¬ 𝑥𝑜))
13 onsssuc 6474 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (𝑜𝑥𝑜 ∈ suc 𝑥))
1412, 13bitr3d 281 . . . . . . . . . . . . . . 15 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥𝑜𝑜 ∈ suc 𝑥))
1514adantrr 717 . . . . . . . . . . . . . 14 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → (¬ 𝑥𝑜𝑜 ∈ suc 𝑥))
16 ontri1 6418 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (𝑜𝑦 ↔ ¬ 𝑦𝑜))
17 onsssuc 6474 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (𝑜𝑦𝑜 ∈ suc 𝑦))
1816, 17bitr3d 281 . . . . . . . . . . . . . . 15 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (¬ 𝑦𝑜𝑜 ∈ suc 𝑦))
1918adantrl 716 . . . . . . . . . . . . . 14 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → (¬ 𝑦𝑜𝑜 ∈ suc 𝑦))
2015, 19bibi12d 345 . . . . . . . . . . . . 13 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → ((¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2120ancoms 458 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2211, 21bitrid 283 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((𝑥𝑜𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2322biimpd 229 . . . . . . . . . 10 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((𝑥𝑜𝑦𝑜) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
245, 10, 23syl6an 684 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑜 ∈ suc 𝐴 → ((𝑥𝑜𝑦𝑜) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))))
2524a2d 29 . . . . . . . 8 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → (𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))))
26 ordelss 6400 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑥𝐴) → 𝑥𝐴)
27 ordelord 6406 . . . . . . . . . . . . . . 15 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
28 ordsucsssuc 7843 . . . . . . . . . . . . . . . 16 ((Ord 𝑥 ∧ Ord 𝐴) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
2928ancoms 458 . . . . . . . . . . . . . . 15 ((Ord 𝐴 ∧ Ord 𝑥) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
3027, 29syldan 591 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑥𝐴) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
3126, 30mpbid 232 . . . . . . . . . . . . 13 ((Ord 𝐴𝑥𝐴) → suc 𝑥 ⊆ suc 𝐴)
3231ssneld 3985 . . . . . . . . . . . 12 ((Ord 𝐴𝑥𝐴) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑥))
3332adantrr 717 . . . . . . . . . . 11 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑥))
34 ordelss 6400 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑦𝐴) → 𝑦𝐴)
35 ordelord 6406 . . . . . . . . . . . . . . 15 ((Ord 𝐴𝑦𝐴) → Ord 𝑦)
36 ordsucsssuc 7843 . . . . . . . . . . . . . . . 16 ((Ord 𝑦 ∧ Ord 𝐴) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3736ancoms 458 . . . . . . . . . . . . . . 15 ((Ord 𝐴 ∧ Ord 𝑦) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3835, 37syldan 591 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑦𝐴) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3934, 38mpbid 232 . . . . . . . . . . . . 13 ((Ord 𝐴𝑦𝐴) → suc 𝑦 ⊆ suc 𝐴)
4039ssneld 3985 . . . . . . . . . . . 12 ((Ord 𝐴𝑦𝐴) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑦))
4140adantrl 716 . . . . . . . . . . 11 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑦))
4233, 41jcad 512 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → (¬ 𝑜 ∈ suc 𝑥 ∧ ¬ 𝑜 ∈ suc 𝑦)))
43 pm5.21 825 . . . . . . . . . 10 ((¬ 𝑜 ∈ suc 𝑥 ∧ ¬ 𝑜 ∈ suc 𝑦) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))
4442, 43syl6 35 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
45 idd 24 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4644, 45jad 187 . . . . . . . 8 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4725, 46syld 47 . . . . . . 7 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4847alimdv 1916 . . . . . 6 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜(𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
492, 48biimtrid 242 . . . . 5 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
50 dfcleq 2730 . . . . . . 7 (suc 𝑥 = suc 𝑦 ↔ ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))
51 suc11 6491 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
5250, 51bitr3id 285 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) ↔ 𝑥 = 𝑦))
535, 52syl 17 . . . . 5 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) ↔ 𝑥 = 𝑦))
5449, 53sylibd 239 . . . 4 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
5554ralrimivva 3202 . . 3 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
561, 55syl 17 . 2 (𝐴 ∈ On → ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
57 onsuctopon 36435 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))
58 ist0-2 23352 . . 3 (suc 𝐴 ∈ (TopOn‘𝐴) → (suc 𝐴 ∈ Kol2 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
5957, 58syl 17 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ Kol2 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
6056, 59mpbird 257 1 (𝐴 ∈ On → suc 𝐴 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wral 3061  wss 3951  Ord word 6383  Oncon0 6384  suc csuc 6386  cfv 6561  TopOnctopon 22916  Kol2ct0 23314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fv 6569  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-t0 23321
This theorem is referenced by:  ordtopt0  36443
  Copyright terms: Public domain W3C validator