MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frpomin Structured version   Visualization version   GIF version

Theorem frpomin 6194
Description: Every nonempty (possibly proper) subclass of a class 𝐴 with a well-founded set-like partial order 𝑅 has a minimal element. The additional condition of partial order over frmin 9365 enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022.)
Assertion
Ref Expression
frpomin (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝑥,𝐵,𝑦

Proof of Theorem frpomin
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4261 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
2 rabeq0 4299 . . . . . . 7 ({𝑤𝐵𝑤𝑅𝑧} = ∅ ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧)
3 simprr 773 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑧𝐵)
4 breq1 5056 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦𝑅𝑥𝑤𝑅𝑥))
54notbid 321 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑤𝑅𝑥))
65cbvralvw 3358 . . . . . . . . . . 11 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑥)
7 breq2 5057 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑤𝑅𝑥𝑤𝑅𝑧))
87notbid 321 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (¬ 𝑤𝑅𝑥 ↔ ¬ 𝑤𝑅𝑧))
98ralbidv 3118 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
106, 9syl5bb 286 . . . . . . . . . 10 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
1110rspcev 3537 . . . . . . . . 9 ((𝑧𝐵 ∧ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
1211ex 416 . . . . . . . 8 (𝑧𝐵 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
133, 12syl 17 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
142, 13syl5bi 245 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} = ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
15 simprl 771 . . . . . . . . . 10 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝐵𝐴)
16 simpl3 1195 . . . . . . . . . 10 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐴)
17 sess2 5520 . . . . . . . . . 10 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
1815, 16, 17sylc 65 . . . . . . . . 9 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐵)
19 seex 5513 . . . . . . . . 9 ((𝑅 Se 𝐵𝑧𝐵) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
2018, 3, 19syl2anc 587 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
21 simpl1 1193 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Fr 𝐴)
22 ssrab2 3993 . . . . . . . . 9 {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐵
2322, 15sstrid 3912 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴)
24 fri 5512 . . . . . . . . 9 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴 ∧ {𝑤𝐵𝑤𝑅𝑧} ≠ ∅)) → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥)
2524expr 460 . . . . . . . 8 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
2620, 21, 23, 25syl21anc 838 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
27 breq1 5056 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤𝑅𝑧𝑥𝑅𝑧))
2827rexrab 3609 . . . . . . . 8 (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
29 breq1 5056 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
3029ralrab 3607 . . . . . . . . . . 11 (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
31 simprr 773 . . . . . . . . . . . . . . . 16 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝑦𝑅𝑥)
32 simplr 769 . . . . . . . . . . . . . . . 16 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝑥𝑅𝑧)
33 simplrl 777 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) → 𝐵𝐴)
3433ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝐵𝐴)
35 simpll2 1215 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) → 𝑅 Po 𝐴)
3635ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝑅 Po 𝐴)
37 poss 5470 . . . . . . . . . . . . . . . . . 18 (𝐵𝐴 → (𝑅 Po 𝐴𝑅 Po 𝐵))
3834, 36, 37sylc 65 . . . . . . . . . . . . . . . . 17 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝑅 Po 𝐵)
39 simprl 771 . . . . . . . . . . . . . . . . 17 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝑦𝐵)
40 simpllr 776 . . . . . . . . . . . . . . . . 17 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝑥𝐵)
41 simplrr 778 . . . . . . . . . . . . . . . . . 18 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) → 𝑧𝐵)
4241ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝑧𝐵)
43 potr 5481 . . . . . . . . . . . . . . . . 17 ((𝑅 Po 𝐵 ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4438, 39, 40, 42, 43syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4531, 32, 44mp2and 699 . . . . . . . . . . . . . . 15 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦𝐵𝑦𝑅𝑥)) → 𝑦𝑅𝑧)
4645expr 460 . . . . . . . . . . . . . 14 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4746con3d 155 . . . . . . . . . . . . 13 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
48 idd 24 . . . . . . . . . . . . 13 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑥 → ¬ 𝑦𝑅𝑥))
4947, 48jad 190 . . . . . . . . . . . 12 ((((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → ((𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
5049ralimdva 3100 . . . . . . . . . . 11 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5130, 50syl5bi 245 . . . . . . . . . 10 (((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5251expimpd 457 . . . . . . . . 9 ((((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) → ((𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5352reximdva 3193 . . . . . . . 8 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5428, 53syl5bi 245 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5526, 54syld 47 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5614, 55pm2.61dne 3028 . . . . 5 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5756expr 460 . . . 4 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5857exlimdv 1941 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (∃𝑧 𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
591, 58syl5bi 245 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
6059impr 458 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  wne 2940  wral 3061  wrex 3062  {crab 3065  Vcvv 3408  wss 3866  c0 4237   class class class wbr 5053   Po wpo 5466   Fr wfr 5506   Se wse 5507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-po 5468  df-fr 5509  df-se 5510
This theorem is referenced by:  frpomin2  6195
  Copyright terms: Public domain W3C validator