Step | Hyp | Ref
| Expression |
1 | | n0 4261 |
. . 3
⊢ (𝐵 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝐵) |
2 | | rabeq0 4299 |
. . . . . . 7
⊢ ({𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} = ∅ ↔ ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) |
3 | | simprr 773 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
4 | | breq1 5056 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑦𝑅𝑥 ↔ 𝑤𝑅𝑥)) |
5 | 4 | notbid 321 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑤𝑅𝑥)) |
6 | 5 | cbvralvw 3358 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑥) |
7 | | breq2 5057 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑤𝑅𝑥 ↔ 𝑤𝑅𝑧)) |
8 | 7 | notbid 321 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (¬ 𝑤𝑅𝑥 ↔ ¬ 𝑤𝑅𝑧)) |
9 | 8 | ralbidv 3118 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑥 ↔ ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧)) |
10 | 6, 9 | syl5bb 286 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧)) |
11 | 10 | rspcev 3537 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
12 | 11 | ex 416 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐵 → (∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
13 | 3, 12 | syl 17 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
14 | 2, 13 | syl5bi 245 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → ({𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} = ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
15 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → 𝐵 ⊆ 𝐴) |
16 | | simpl3 1195 |
. . . . . . . . . 10
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → 𝑅 Se 𝐴) |
17 | | sess2 5520 |
. . . . . . . . . 10
⊢ (𝐵 ⊆ 𝐴 → (𝑅 Se 𝐴 → 𝑅 Se 𝐵)) |
18 | 15, 16, 17 | sylc 65 |
. . . . . . . . 9
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → 𝑅 Se 𝐵) |
19 | | seex 5513 |
. . . . . . . . 9
⊢ ((𝑅 Se 𝐵 ∧ 𝑧 ∈ 𝐵) → {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ∈ V) |
20 | 18, 3, 19 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ∈ V) |
21 | | simpl1 1193 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → 𝑅 Fr 𝐴) |
22 | | ssrab2 3993 |
. . . . . . . . 9
⊢ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ⊆ 𝐵 |
23 | 22, 15 | sstrid 3912 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ⊆ 𝐴) |
24 | | fri 5512 |
. . . . . . . . 9
⊢ ((({𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ⊆ 𝐴 ∧ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ≠ ∅)) → ∃𝑥 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧}∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) |
25 | 24 | expr 460 |
. . . . . . . 8
⊢ ((({𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ⊆ 𝐴) → ({𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧}∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥)) |
26 | 20, 21, 23, 25 | syl21anc 838 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → ({𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧}∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥)) |
27 | | breq1 5056 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑤𝑅𝑧 ↔ 𝑥𝑅𝑧)) |
28 | 27 | rexrab 3609 |
. . . . . . . 8
⊢
(∃𝑥 ∈
{𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧}∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∃𝑥 ∈ 𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥)) |
29 | | breq1 5056 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑧 ↔ 𝑦𝑅𝑧)) |
30 | 29 | ralrab 3607 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
{𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥)) |
31 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝑦𝑅𝑥) |
32 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝑥𝑅𝑧) |
33 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) → 𝐵 ⊆ 𝐴) |
34 | 33 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝐵 ⊆ 𝐴) |
35 | | simpll2 1215 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) → 𝑅 Po 𝐴) |
36 | 35 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝑅 Po 𝐴) |
37 | | poss 5470 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ⊆ 𝐴 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) |
38 | 34, 36, 37 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝑅 Po 𝐵) |
39 | | simprl 771 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝑦 ∈ 𝐵) |
40 | | simpllr 776 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝑥 ∈ 𝐵) |
41 | | simplrr 778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
42 | 41 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝑧 ∈ 𝐵) |
43 | | potr 5481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 Po 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦𝑅𝑥 ∧ 𝑥𝑅𝑧) → 𝑦𝑅𝑧)) |
44 | 38, 39, 40, 42, 43 | syl13anc 1374 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → ((𝑦𝑅𝑥 ∧ 𝑥𝑅𝑧) → 𝑦𝑅𝑧)) |
45 | 31, 32, 44 | mp2and 699 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) → 𝑦𝑅𝑧) |
46 | 45 | expr 460 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦 ∈ 𝐵) → (𝑦𝑅𝑥 → 𝑦𝑅𝑧)) |
47 | 46 | con3d 155 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦 ∈ 𝐵) → (¬ 𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥)) |
48 | | idd 24 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦 ∈ 𝐵) → (¬ 𝑦𝑅𝑥 → ¬ 𝑦𝑅𝑥)) |
49 | 47, 48 | jad 190 |
. . . . . . . . . . . 12
⊢
((((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦 ∈ 𝐵) → ((𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥)) |
50 | 49 | ralimdva 3100 |
. . . . . . . . . . 11
⊢
(((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
51 | 30, 50 | syl5bi 245 |
. . . . . . . . . 10
⊢
(((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
52 | 51 | expimpd 457 |
. . . . . . . . 9
⊢ ((((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐵) → ((𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
53 | 52 | reximdva 3193 |
. . . . . . . 8
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (∃𝑥 ∈ 𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
54 | 28, 53 | syl5bi 245 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (∃𝑥 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧}∀𝑦 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
55 | 26, 54 | syld 47 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → ({𝑤 ∈ 𝐵 ∣ 𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
56 | 14, 55 | pm2.61dne 3028 |
. . . . 5
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐵)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
57 | 56 | expr 460 |
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ⊆ 𝐴) → (𝑧 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
58 | 57 | exlimdv 1941 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ⊆ 𝐴) → (∃𝑧 𝑧 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
59 | 1, 58 | syl5bi 245 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ≠ ∅ → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
60 | 59 | impr 458 |
1
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |