Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordcmp Structured version   Visualization version   GIF version

Theorem ordcmp 36429
Description: An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is 1o. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordcmp (Ord 𝐴 → (𝐴 ∈ Comp ↔ ( 𝐴 = 𝐴𝐴 = 1o)))

Proof of Theorem ordcmp
StepHypRef Expression
1 orduni 7808 . . . 4 (Ord 𝐴 → Ord 𝐴)
2 unizlim 6508 . . . . . 6 (Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴)))
3 uni0b 4937 . . . . . . 7 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
43orbi1i 913 . . . . . 6 (( 𝐴 = ∅ ∨ Lim 𝐴) ↔ (𝐴 ⊆ {∅} ∨ Lim 𝐴))
52, 4bitrdi 287 . . . . 5 (Ord 𝐴 → ( 𝐴 = 𝐴 ↔ (𝐴 ⊆ {∅} ∨ Lim 𝐴)))
65biimpd 229 . . . 4 (Ord 𝐴 → ( 𝐴 = 𝐴 → (𝐴 ⊆ {∅} ∨ Lim 𝐴)))
71, 6syl 17 . . 3 (Ord 𝐴 → ( 𝐴 = 𝐴 → (𝐴 ⊆ {∅} ∨ Lim 𝐴)))
8 sssn 4830 . . . . . . 7 (𝐴 ⊆ {∅} ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
9 0ntop 22926 . . . . . . . . . . 11 ¬ ∅ ∈ Top
10 cmptop 23418 . . . . . . . . . . 11 (∅ ∈ Comp → ∅ ∈ Top)
119, 10mto 197 . . . . . . . . . 10 ¬ ∅ ∈ Comp
12 eleq1 2826 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴 ∈ Comp ↔ ∅ ∈ Comp))
1311, 12mtbiri 327 . . . . . . . . 9 (𝐴 = ∅ → ¬ 𝐴 ∈ Comp)
1413pm2.21d 121 . . . . . . . 8 (𝐴 = ∅ → (𝐴 ∈ Comp → 𝐴 = 1o))
15 id 22 . . . . . . . . . 10 (𝐴 = {∅} → 𝐴 = {∅})
16 df1o2 8511 . . . . . . . . . 10 1o = {∅}
1715, 16eqtr4di 2792 . . . . . . . . 9 (𝐴 = {∅} → 𝐴 = 1o)
1817a1d 25 . . . . . . . 8 (𝐴 = {∅} → (𝐴 ∈ Comp → 𝐴 = 1o))
1914, 18jaoi 857 . . . . . . 7 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 ∈ Comp → 𝐴 = 1o))
208, 19sylbi 217 . . . . . 6 (𝐴 ⊆ {∅} → (𝐴 ∈ Comp → 𝐴 = 1o))
2120a1i 11 . . . . 5 (Ord 𝐴 → (𝐴 ⊆ {∅} → (𝐴 ∈ Comp → 𝐴 = 1o)))
22 ordtop 36418 . . . . . . . . . . 11 (Ord 𝐴 → (𝐴 ∈ Top ↔ 𝐴 𝐴))
2322biimpd 229 . . . . . . . . . 10 (Ord 𝐴 → (𝐴 ∈ Top → 𝐴 𝐴))
2423necon2bd 2953 . . . . . . . . 9 (Ord 𝐴 → (𝐴 = 𝐴 → ¬ 𝐴 ∈ Top))
25 cmptop 23418 . . . . . . . . . 10 (𝐴 ∈ Comp → 𝐴 ∈ Top)
2625con3i 154 . . . . . . . . 9 𝐴 ∈ Top → ¬ 𝐴 ∈ Comp)
2724, 26syl6 35 . . . . . . . 8 (Ord 𝐴 → (𝐴 = 𝐴 → ¬ 𝐴 ∈ Comp))
2827a1dd 50 . . . . . . 7 (Ord 𝐴 → (𝐴 = 𝐴 → (Lim 𝐴 → ¬ 𝐴 ∈ Comp)))
29 limsucncmp 36428 . . . . . . . . 9 (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp)
30 eleq1 2826 . . . . . . . . . 10 (𝐴 = suc 𝐴 → (𝐴 ∈ Comp ↔ suc 𝐴 ∈ Comp))
3130notbid 318 . . . . . . . . 9 (𝐴 = suc 𝐴 → (¬ 𝐴 ∈ Comp ↔ ¬ suc 𝐴 ∈ Comp))
3229, 31imbitrrid 246 . . . . . . . 8 (𝐴 = suc 𝐴 → (Lim 𝐴 → ¬ 𝐴 ∈ Comp))
3332a1i 11 . . . . . . 7 (Ord 𝐴 → (𝐴 = suc 𝐴 → (Lim 𝐴 → ¬ 𝐴 ∈ Comp)))
34 orduniorsuc 7849 . . . . . . 7 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
3528, 33, 34mpjaod 860 . . . . . 6 (Ord 𝐴 → (Lim 𝐴 → ¬ 𝐴 ∈ Comp))
36 pm2.21 123 . . . . . 6 𝐴 ∈ Comp → (𝐴 ∈ Comp → 𝐴 = 1o))
3735, 36syl6 35 . . . . 5 (Ord 𝐴 → (Lim 𝐴 → (𝐴 ∈ Comp → 𝐴 = 1o)))
3821, 37jaod 859 . . . 4 (Ord 𝐴 → ((𝐴 ⊆ {∅} ∨ Lim 𝐴) → (𝐴 ∈ Comp → 𝐴 = 1o)))
3938com23 86 . . 3 (Ord 𝐴 → (𝐴 ∈ Comp → ((𝐴 ⊆ {∅} ∨ Lim 𝐴) → 𝐴 = 1o)))
407, 39syl5d 73 . 2 (Ord 𝐴 → (𝐴 ∈ Comp → ( 𝐴 = 𝐴𝐴 = 1o)))
41 ordeleqon 7800 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
42 unon 7850 . . . . . . . . . . 11 On = On
4342eqcomi 2743 . . . . . . . . . 10 On = On
4443unieqi 4923 . . . . . . . . 9 On = On
45 unieq 4922 . . . . . . . . 9 (𝐴 = On → 𝐴 = On)
4645unieqd 4924 . . . . . . . . 9 (𝐴 = On → 𝐴 = On)
4744, 45, 463eqtr4a 2800 . . . . . . . 8 (𝐴 = On → 𝐴 = 𝐴)
4847orim2i 910 . . . . . . 7 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
4941, 48sylbi 217 . . . . . 6 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
5049orcomd 871 . . . . 5 (Ord 𝐴 → ( 𝐴 = 𝐴𝐴 ∈ On))
5150ord 864 . . . 4 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 ∈ On))
52 unieq 4922 . . . . . . 7 (𝐴 = 𝐴 𝐴 = 𝐴)
5352con3i 154 . . . . . 6 𝐴 = 𝐴 → ¬ 𝐴 = 𝐴)
5434ord 864 . . . . . 6 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
5553, 54syl5 34 . . . . 5 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
56 orduniorsuc 7849 . . . . . . . 8 (Ord 𝐴 → ( 𝐴 = 𝐴 𝐴 = suc 𝐴))
571, 56syl 17 . . . . . . 7 (Ord 𝐴 → ( 𝐴 = 𝐴 𝐴 = suc 𝐴))
5857ord 864 . . . . . 6 (Ord 𝐴 → (¬ 𝐴 = 𝐴 𝐴 = suc 𝐴))
59 suceq 6451 . . . . . 6 ( 𝐴 = suc 𝐴 → suc 𝐴 = suc suc 𝐴)
6058, 59syl6 35 . . . . 5 (Ord 𝐴 → (¬ 𝐴 = 𝐴 → suc 𝐴 = suc suc 𝐴))
61 eqtr 2757 . . . . . 6 ((𝐴 = suc 𝐴 ∧ suc 𝐴 = suc suc 𝐴) → 𝐴 = suc suc 𝐴)
6261ex 412 . . . . 5 (𝐴 = suc 𝐴 → (suc 𝐴 = suc suc 𝐴𝐴 = suc suc 𝐴))
6355, 60, 62syl6c 70 . . . 4 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc suc 𝐴))
64 onuni 7807 . . . . 5 (𝐴 ∈ On → 𝐴 ∈ On)
65 onuni 7807 . . . . 5 ( 𝐴 ∈ On → 𝐴 ∈ On)
66 onsucsuccmp 36426 . . . . 5 ( 𝐴 ∈ On → suc suc 𝐴 ∈ Comp)
67 eleq1a 2833 . . . . 5 (suc suc 𝐴 ∈ Comp → (𝐴 = suc suc 𝐴𝐴 ∈ Comp))
6864, 65, 66, 674syl 19 . . . 4 (𝐴 ∈ On → (𝐴 = suc suc 𝐴𝐴 ∈ Comp))
6951, 63, 68syl6c 70 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 ∈ Comp))
70 id 22 . . . . . 6 (𝐴 = 1o𝐴 = 1o)
7170, 16eqtrdi 2790 . . . . 5 (𝐴 = 1o𝐴 = {∅})
72 0cmp 23417 . . . . 5 {∅} ∈ Comp
7371, 72eqeltrdi 2846 . . . 4 (𝐴 = 1o𝐴 ∈ Comp)
7473a1i 11 . . 3 (Ord 𝐴 → (𝐴 = 1o𝐴 ∈ Comp))
7569, 74jad 187 . 2 (Ord 𝐴 → (( 𝐴 = 𝐴𝐴 = 1o) → 𝐴 ∈ Comp))
7640, 75impbid 212 1 (Ord 𝐴 → (𝐴 ∈ Comp ↔ ( 𝐴 = 𝐴𝐴 = 1o)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1536  wcel 2105  wne 2937  wss 3962  c0 4338  {csn 4630   cuni 4911  Ord word 6384  Oncon0 6385  Lim wlim 6386  suc csuc 6387  1oc1o 8497  Topctop 22914  Compccmp 23409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-1o 8504  df-en 8984  df-fin 8987  df-topgen 17489  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator