Proof of Theorem ordcmp
| Step | Hyp | Ref
| Expression |
| 1 | | orduni 7788 |
. . . 4
⊢ (Ord
𝐴 → Ord ∪ 𝐴) |
| 2 | | unizlim 6482 |
. . . . . 6
⊢ (Ord
∪ 𝐴 → (∪ 𝐴 = ∪
∪ 𝐴 ↔ (∪ 𝐴 = ∅ ∨ Lim ∪ 𝐴))) |
| 3 | | uni0b 4914 |
. . . . . . 7
⊢ (∪ 𝐴 =
∅ ↔ 𝐴 ⊆
{∅}) |
| 4 | 3 | orbi1i 913 |
. . . . . 6
⊢ ((∪ 𝐴 =
∅ ∨ Lim ∪ 𝐴) ↔ (𝐴 ⊆ {∅} ∨ Lim ∪ 𝐴)) |
| 5 | 2, 4 | bitrdi 287 |
. . . . 5
⊢ (Ord
∪ 𝐴 → (∪ 𝐴 = ∪
∪ 𝐴 ↔ (𝐴 ⊆ {∅} ∨ Lim ∪ 𝐴))) |
| 6 | 5 | biimpd 229 |
. . . 4
⊢ (Ord
∪ 𝐴 → (∪ 𝐴 = ∪
∪ 𝐴 → (𝐴 ⊆ {∅} ∨ Lim ∪ 𝐴))) |
| 7 | 1, 6 | syl 17 |
. . 3
⊢ (Ord
𝐴 → (∪ 𝐴 =
∪ ∪ 𝐴 → (𝐴 ⊆ {∅} ∨ Lim ∪ 𝐴))) |
| 8 | | sssn 4807 |
. . . . . . 7
⊢ (𝐴 ⊆ {∅} ↔ (𝐴 = ∅ ∨ 𝐴 = {∅})) |
| 9 | | 0ntop 22848 |
. . . . . . . . . . 11
⊢ ¬
∅ ∈ Top |
| 10 | | cmptop 23338 |
. . . . . . . . . . 11
⊢ (∅
∈ Comp → ∅ ∈ Top) |
| 11 | 9, 10 | mto 197 |
. . . . . . . . . 10
⊢ ¬
∅ ∈ Comp |
| 12 | | eleq1 2823 |
. . . . . . . . . 10
⊢ (𝐴 = ∅ → (𝐴 ∈ Comp ↔ ∅
∈ Comp)) |
| 13 | 11, 12 | mtbiri 327 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → ¬ 𝐴 ∈ Comp) |
| 14 | 13 | pm2.21d 121 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (𝐴 ∈ Comp → 𝐴 =
1o)) |
| 15 | | id 22 |
. . . . . . . . . 10
⊢ (𝐴 = {∅} → 𝐴 = {∅}) |
| 16 | | df1o2 8492 |
. . . . . . . . . 10
⊢
1o = {∅} |
| 17 | 15, 16 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝐴 = {∅} → 𝐴 =
1o) |
| 18 | 17 | a1d 25 |
. . . . . . . 8
⊢ (𝐴 = {∅} → (𝐴 ∈ Comp → 𝐴 =
1o)) |
| 19 | 14, 18 | jaoi 857 |
. . . . . . 7
⊢ ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 ∈ Comp → 𝐴 =
1o)) |
| 20 | 8, 19 | sylbi 217 |
. . . . . 6
⊢ (𝐴 ⊆ {∅} → (𝐴 ∈ Comp → 𝐴 =
1o)) |
| 21 | 20 | a1i 11 |
. . . . 5
⊢ (Ord
𝐴 → (𝐴 ⊆ {∅} → (𝐴 ∈ Comp → 𝐴 = 1o))) |
| 22 | | ordtop 36459 |
. . . . . . . . . . 11
⊢ (Ord
𝐴 → (𝐴 ∈ Top ↔ 𝐴 ≠ ∪ 𝐴)) |
| 23 | 22 | biimpd 229 |
. . . . . . . . . 10
⊢ (Ord
𝐴 → (𝐴 ∈ Top → 𝐴 ≠ ∪ 𝐴)) |
| 24 | 23 | necon2bd 2949 |
. . . . . . . . 9
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 → ¬ 𝐴 ∈ Top)) |
| 25 | | cmptop 23338 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Comp → 𝐴 ∈ Top) |
| 26 | 25 | con3i 154 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ Top → ¬
𝐴 ∈
Comp) |
| 27 | 24, 26 | syl6 35 |
. . . . . . . 8
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 → ¬ 𝐴 ∈ Comp)) |
| 28 | 27 | a1dd 50 |
. . . . . . 7
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 → (Lim ∪ 𝐴
→ ¬ 𝐴 ∈
Comp))) |
| 29 | | limsucncmp 36469 |
. . . . . . . . 9
⊢ (Lim
∪ 𝐴 → ¬ suc ∪ 𝐴
∈ Comp) |
| 30 | | eleq1 2823 |
. . . . . . . . . 10
⊢ (𝐴 = suc ∪ 𝐴
→ (𝐴 ∈ Comp
↔ suc ∪ 𝐴 ∈ Comp)) |
| 31 | 30 | notbid 318 |
. . . . . . . . 9
⊢ (𝐴 = suc ∪ 𝐴
→ (¬ 𝐴 ∈ Comp
↔ ¬ suc ∪ 𝐴 ∈ Comp)) |
| 32 | 29, 31 | imbitrrid 246 |
. . . . . . . 8
⊢ (𝐴 = suc ∪ 𝐴
→ (Lim ∪ 𝐴 → ¬ 𝐴 ∈ Comp)) |
| 33 | 32 | a1i 11 |
. . . . . . 7
⊢ (Ord
𝐴 → (𝐴 = suc ∪ 𝐴 → (Lim ∪ 𝐴
→ ¬ 𝐴 ∈
Comp))) |
| 34 | | orduniorsuc 7829 |
. . . . . . 7
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
| 35 | 28, 33, 34 | mpjaod 860 |
. . . . . 6
⊢ (Ord
𝐴 → (Lim ∪ 𝐴
→ ¬ 𝐴 ∈
Comp)) |
| 36 | | pm2.21 123 |
. . . . . 6
⊢ (¬
𝐴 ∈ Comp → (𝐴 ∈ Comp → 𝐴 =
1o)) |
| 37 | 35, 36 | syl6 35 |
. . . . 5
⊢ (Ord
𝐴 → (Lim ∪ 𝐴
→ (𝐴 ∈ Comp
→ 𝐴 =
1o))) |
| 38 | 21, 37 | jaod 859 |
. . . 4
⊢ (Ord
𝐴 → ((𝐴 ⊆ {∅} ∨ Lim
∪ 𝐴) → (𝐴 ∈ Comp → 𝐴 = 1o))) |
| 39 | 38 | com23 86 |
. . 3
⊢ (Ord
𝐴 → (𝐴 ∈ Comp → ((𝐴 ⊆ {∅} ∨ Lim ∪ 𝐴)
→ 𝐴 =
1o))) |
| 40 | 7, 39 | syl5d 73 |
. 2
⊢ (Ord
𝐴 → (𝐴 ∈ Comp → (∪ 𝐴 =
∪ ∪ 𝐴 → 𝐴 = 1o))) |
| 41 | | ordeleqon 7781 |
. . . . . . 7
⊢ (Ord
𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) |
| 42 | | unon 7830 |
. . . . . . . . . . 11
⊢ ∪ On = On |
| 43 | 42 | eqcomi 2745 |
. . . . . . . . . 10
⊢ On =
∪ On |
| 44 | 43 | unieqi 4900 |
. . . . . . . . 9
⊢ ∪ On = ∪ ∪ On |
| 45 | | unieq 4899 |
. . . . . . . . 9
⊢ (𝐴 = On → ∪ 𝐴 =
∪ On) |
| 46 | 45 | unieqd 4901 |
. . . . . . . . 9
⊢ (𝐴 = On → ∪ ∪ 𝐴 = ∪ ∪ On) |
| 47 | 44, 45, 46 | 3eqtr4a 2797 |
. . . . . . . 8
⊢ (𝐴 = On → ∪ 𝐴 =
∪ ∪ 𝐴) |
| 48 | 47 | orim2i 910 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ ∪
𝐴 = ∪ ∪ 𝐴)) |
| 49 | 41, 48 | sylbi 217 |
. . . . . 6
⊢ (Ord
𝐴 → (𝐴 ∈ On ∨ ∪
𝐴 = ∪ ∪ 𝐴)) |
| 50 | 49 | orcomd 871 |
. . . . 5
⊢ (Ord
𝐴 → (∪ 𝐴 =
∪ ∪ 𝐴 ∨ 𝐴 ∈ On)) |
| 51 | 50 | ord 864 |
. . . 4
⊢ (Ord
𝐴 → (¬ ∪ 𝐴 =
∪ ∪ 𝐴 → 𝐴 ∈ On)) |
| 52 | | unieq 4899 |
. . . . . . 7
⊢ (𝐴 = ∪
𝐴 → ∪ 𝐴 =
∪ ∪ 𝐴) |
| 53 | 52 | con3i 154 |
. . . . . 6
⊢ (¬
∪ 𝐴 = ∪ ∪ 𝐴
→ ¬ 𝐴 = ∪ 𝐴) |
| 54 | 34 | ord 864 |
. . . . . 6
⊢ (Ord
𝐴 → (¬ 𝐴 = ∪
𝐴 → 𝐴 = suc ∪ 𝐴)) |
| 55 | 53, 54 | syl5 34 |
. . . . 5
⊢ (Ord
𝐴 → (¬ ∪ 𝐴 =
∪ ∪ 𝐴 → 𝐴 = suc ∪ 𝐴)) |
| 56 | | orduniorsuc 7829 |
. . . . . . . 8
⊢ (Ord
∪ 𝐴 → (∪ 𝐴 = ∪
∪ 𝐴 ∨ ∪ 𝐴 = suc ∪ ∪ 𝐴)) |
| 57 | 1, 56 | syl 17 |
. . . . . . 7
⊢ (Ord
𝐴 → (∪ 𝐴 =
∪ ∪ 𝐴 ∨ ∪ 𝐴 = suc ∪ ∪ 𝐴)) |
| 58 | 57 | ord 864 |
. . . . . 6
⊢ (Ord
𝐴 → (¬ ∪ 𝐴 =
∪ ∪ 𝐴 → ∪ 𝐴 = suc ∪ ∪ 𝐴)) |
| 59 | | suceq 6424 |
. . . . . 6
⊢ (∪ 𝐴 =
suc ∪ ∪ 𝐴 → suc ∪
𝐴 = suc suc ∪ ∪ 𝐴) |
| 60 | 58, 59 | syl6 35 |
. . . . 5
⊢ (Ord
𝐴 → (¬ ∪ 𝐴 =
∪ ∪ 𝐴 → suc ∪
𝐴 = suc suc ∪ ∪ 𝐴)) |
| 61 | | eqtr 2756 |
. . . . . 6
⊢ ((𝐴 = suc ∪ 𝐴
∧ suc ∪ 𝐴 = suc suc ∪
∪ 𝐴) → 𝐴 = suc suc ∪
∪ 𝐴) |
| 62 | 61 | ex 412 |
. . . . 5
⊢ (𝐴 = suc ∪ 𝐴
→ (suc ∪ 𝐴 = suc suc ∪
∪ 𝐴 → 𝐴 = suc suc ∪
∪ 𝐴)) |
| 63 | 55, 60, 62 | syl6c 70 |
. . . 4
⊢ (Ord
𝐴 → (¬ ∪ 𝐴 =
∪ ∪ 𝐴 → 𝐴 = suc suc ∪
∪ 𝐴)) |
| 64 | | onuni 7787 |
. . . . 5
⊢ (𝐴 ∈ On → ∪ 𝐴
∈ On) |
| 65 | | onuni 7787 |
. . . . 5
⊢ (∪ 𝐴
∈ On → ∪ ∪
𝐴 ∈
On) |
| 66 | | onsucsuccmp 36467 |
. . . . 5
⊢ (∪ ∪ 𝐴 ∈ On → suc suc ∪ ∪ 𝐴 ∈ Comp) |
| 67 | | eleq1a 2830 |
. . . . 5
⊢ (suc suc
∪ ∪ 𝐴 ∈ Comp → (𝐴 = suc suc ∪
∪ 𝐴 → 𝐴 ∈ Comp)) |
| 68 | 64, 65, 66, 67 | 4syl 19 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 = suc suc ∪ ∪ 𝐴 → 𝐴 ∈ Comp)) |
| 69 | 51, 63, 68 | syl6c 70 |
. . 3
⊢ (Ord
𝐴 → (¬ ∪ 𝐴 =
∪ ∪ 𝐴 → 𝐴 ∈ Comp)) |
| 70 | | id 22 |
. . . . . 6
⊢ (𝐴 = 1o → 𝐴 =
1o) |
| 71 | 70, 16 | eqtrdi 2787 |
. . . . 5
⊢ (𝐴 = 1o → 𝐴 = {∅}) |
| 72 | | 0cmp 23337 |
. . . . 5
⊢ {∅}
∈ Comp |
| 73 | 71, 72 | eqeltrdi 2843 |
. . . 4
⊢ (𝐴 = 1o → 𝐴 ∈ Comp) |
| 74 | 73 | a1i 11 |
. . 3
⊢ (Ord
𝐴 → (𝐴 = 1o → 𝐴 ∈ Comp)) |
| 75 | 69, 74 | jad 187 |
. 2
⊢ (Ord
𝐴 → ((∪ 𝐴 =
∪ ∪ 𝐴 → 𝐴 = 1o) → 𝐴 ∈ Comp)) |
| 76 | 40, 75 | impbid 212 |
1
⊢ (Ord
𝐴 → (𝐴 ∈ Comp ↔ (∪ 𝐴 =
∪ ∪ 𝐴 → 𝐴 = 1o))) |