Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordcmp Structured version   Visualization version   GIF version

Theorem ordcmp 36442
Description: An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is 1o. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordcmp (Ord 𝐴 → (𝐴 ∈ Comp ↔ ( 𝐴 = 𝐴𝐴 = 1o)))

Proof of Theorem ordcmp
StepHypRef Expression
1 orduni 7768 . . . 4 (Ord 𝐴 → Ord 𝐴)
2 unizlim 6460 . . . . . 6 (Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴)))
3 uni0b 4900 . . . . . . 7 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
43orbi1i 913 . . . . . 6 (( 𝐴 = ∅ ∨ Lim 𝐴) ↔ (𝐴 ⊆ {∅} ∨ Lim 𝐴))
52, 4bitrdi 287 . . . . 5 (Ord 𝐴 → ( 𝐴 = 𝐴 ↔ (𝐴 ⊆ {∅} ∨ Lim 𝐴)))
65biimpd 229 . . . 4 (Ord 𝐴 → ( 𝐴 = 𝐴 → (𝐴 ⊆ {∅} ∨ Lim 𝐴)))
71, 6syl 17 . . 3 (Ord 𝐴 → ( 𝐴 = 𝐴 → (𝐴 ⊆ {∅} ∨ Lim 𝐴)))
8 sssn 4793 . . . . . . 7 (𝐴 ⊆ {∅} ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
9 0ntop 22799 . . . . . . . . . . 11 ¬ ∅ ∈ Top
10 cmptop 23289 . . . . . . . . . . 11 (∅ ∈ Comp → ∅ ∈ Top)
119, 10mto 197 . . . . . . . . . 10 ¬ ∅ ∈ Comp
12 eleq1 2817 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴 ∈ Comp ↔ ∅ ∈ Comp))
1311, 12mtbiri 327 . . . . . . . . 9 (𝐴 = ∅ → ¬ 𝐴 ∈ Comp)
1413pm2.21d 121 . . . . . . . 8 (𝐴 = ∅ → (𝐴 ∈ Comp → 𝐴 = 1o))
15 id 22 . . . . . . . . . 10 (𝐴 = {∅} → 𝐴 = {∅})
16 df1o2 8444 . . . . . . . . . 10 1o = {∅}
1715, 16eqtr4di 2783 . . . . . . . . 9 (𝐴 = {∅} → 𝐴 = 1o)
1817a1d 25 . . . . . . . 8 (𝐴 = {∅} → (𝐴 ∈ Comp → 𝐴 = 1o))
1914, 18jaoi 857 . . . . . . 7 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 ∈ Comp → 𝐴 = 1o))
208, 19sylbi 217 . . . . . 6 (𝐴 ⊆ {∅} → (𝐴 ∈ Comp → 𝐴 = 1o))
2120a1i 11 . . . . 5 (Ord 𝐴 → (𝐴 ⊆ {∅} → (𝐴 ∈ Comp → 𝐴 = 1o)))
22 ordtop 36431 . . . . . . . . . . 11 (Ord 𝐴 → (𝐴 ∈ Top ↔ 𝐴 𝐴))
2322biimpd 229 . . . . . . . . . 10 (Ord 𝐴 → (𝐴 ∈ Top → 𝐴 𝐴))
2423necon2bd 2942 . . . . . . . . 9 (Ord 𝐴 → (𝐴 = 𝐴 → ¬ 𝐴 ∈ Top))
25 cmptop 23289 . . . . . . . . . 10 (𝐴 ∈ Comp → 𝐴 ∈ Top)
2625con3i 154 . . . . . . . . 9 𝐴 ∈ Top → ¬ 𝐴 ∈ Comp)
2724, 26syl6 35 . . . . . . . 8 (Ord 𝐴 → (𝐴 = 𝐴 → ¬ 𝐴 ∈ Comp))
2827a1dd 50 . . . . . . 7 (Ord 𝐴 → (𝐴 = 𝐴 → (Lim 𝐴 → ¬ 𝐴 ∈ Comp)))
29 limsucncmp 36441 . . . . . . . . 9 (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp)
30 eleq1 2817 . . . . . . . . . 10 (𝐴 = suc 𝐴 → (𝐴 ∈ Comp ↔ suc 𝐴 ∈ Comp))
3130notbid 318 . . . . . . . . 9 (𝐴 = suc 𝐴 → (¬ 𝐴 ∈ Comp ↔ ¬ suc 𝐴 ∈ Comp))
3229, 31imbitrrid 246 . . . . . . . 8 (𝐴 = suc 𝐴 → (Lim 𝐴 → ¬ 𝐴 ∈ Comp))
3332a1i 11 . . . . . . 7 (Ord 𝐴 → (𝐴 = suc 𝐴 → (Lim 𝐴 → ¬ 𝐴 ∈ Comp)))
34 orduniorsuc 7808 . . . . . . 7 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
3528, 33, 34mpjaod 860 . . . . . 6 (Ord 𝐴 → (Lim 𝐴 → ¬ 𝐴 ∈ Comp))
36 pm2.21 123 . . . . . 6 𝐴 ∈ Comp → (𝐴 ∈ Comp → 𝐴 = 1o))
3735, 36syl6 35 . . . . 5 (Ord 𝐴 → (Lim 𝐴 → (𝐴 ∈ Comp → 𝐴 = 1o)))
3821, 37jaod 859 . . . 4 (Ord 𝐴 → ((𝐴 ⊆ {∅} ∨ Lim 𝐴) → (𝐴 ∈ Comp → 𝐴 = 1o)))
3938com23 86 . . 3 (Ord 𝐴 → (𝐴 ∈ Comp → ((𝐴 ⊆ {∅} ∨ Lim 𝐴) → 𝐴 = 1o)))
407, 39syl5d 73 . 2 (Ord 𝐴 → (𝐴 ∈ Comp → ( 𝐴 = 𝐴𝐴 = 1o)))
41 ordeleqon 7761 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
42 unon 7809 . . . . . . . . . . 11 On = On
4342eqcomi 2739 . . . . . . . . . 10 On = On
4443unieqi 4886 . . . . . . . . 9 On = On
45 unieq 4885 . . . . . . . . 9 (𝐴 = On → 𝐴 = On)
4645unieqd 4887 . . . . . . . . 9 (𝐴 = On → 𝐴 = On)
4744, 45, 463eqtr4a 2791 . . . . . . . 8 (𝐴 = On → 𝐴 = 𝐴)
4847orim2i 910 . . . . . . 7 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
4941, 48sylbi 217 . . . . . 6 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
5049orcomd 871 . . . . 5 (Ord 𝐴 → ( 𝐴 = 𝐴𝐴 ∈ On))
5150ord 864 . . . 4 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 ∈ On))
52 unieq 4885 . . . . . . 7 (𝐴 = 𝐴 𝐴 = 𝐴)
5352con3i 154 . . . . . 6 𝐴 = 𝐴 → ¬ 𝐴 = 𝐴)
5434ord 864 . . . . . 6 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
5553, 54syl5 34 . . . . 5 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
56 orduniorsuc 7808 . . . . . . . 8 (Ord 𝐴 → ( 𝐴 = 𝐴 𝐴 = suc 𝐴))
571, 56syl 17 . . . . . . 7 (Ord 𝐴 → ( 𝐴 = 𝐴 𝐴 = suc 𝐴))
5857ord 864 . . . . . 6 (Ord 𝐴 → (¬ 𝐴 = 𝐴 𝐴 = suc 𝐴))
59 suceq 6403 . . . . . 6 ( 𝐴 = suc 𝐴 → suc 𝐴 = suc suc 𝐴)
6058, 59syl6 35 . . . . 5 (Ord 𝐴 → (¬ 𝐴 = 𝐴 → suc 𝐴 = suc suc 𝐴))
61 eqtr 2750 . . . . . 6 ((𝐴 = suc 𝐴 ∧ suc 𝐴 = suc suc 𝐴) → 𝐴 = suc suc 𝐴)
6261ex 412 . . . . 5 (𝐴 = suc 𝐴 → (suc 𝐴 = suc suc 𝐴𝐴 = suc suc 𝐴))
6355, 60, 62syl6c 70 . . . 4 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc suc 𝐴))
64 onuni 7767 . . . . 5 (𝐴 ∈ On → 𝐴 ∈ On)
65 onuni 7767 . . . . 5 ( 𝐴 ∈ On → 𝐴 ∈ On)
66 onsucsuccmp 36439 . . . . 5 ( 𝐴 ∈ On → suc suc 𝐴 ∈ Comp)
67 eleq1a 2824 . . . . 5 (suc suc 𝐴 ∈ Comp → (𝐴 = suc suc 𝐴𝐴 ∈ Comp))
6864, 65, 66, 674syl 19 . . . 4 (𝐴 ∈ On → (𝐴 = suc suc 𝐴𝐴 ∈ Comp))
6951, 63, 68syl6c 70 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 ∈ Comp))
70 id 22 . . . . . 6 (𝐴 = 1o𝐴 = 1o)
7170, 16eqtrdi 2781 . . . . 5 (𝐴 = 1o𝐴 = {∅})
72 0cmp 23288 . . . . 5 {∅} ∈ Comp
7371, 72eqeltrdi 2837 . . . 4 (𝐴 = 1o𝐴 ∈ Comp)
7473a1i 11 . . 3 (Ord 𝐴 → (𝐴 = 1o𝐴 ∈ Comp))
7569, 74jad 187 . 2 (Ord 𝐴 → (( 𝐴 = 𝐴𝐴 = 1o) → 𝐴 ∈ Comp))
7640, 75impbid 212 1 (Ord 𝐴 → (𝐴 ∈ Comp ↔ ( 𝐴 = 𝐴𝐴 = 1o)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wne 2926  wss 3917  c0 4299  {csn 4592   cuni 4874  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  1oc1o 8430  Topctop 22787  Compccmp 23280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-fin 8925  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator