MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu2 Structured version   Visualization version   GIF version

Theorem wereu2 5577
Description: A nonempty subclass of an 𝑅-well-ordered and 𝑅-setlike class has a unique 𝑅-minimal element. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
wereu2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem wereu2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4277 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
2 rabeq0 4315 . . . . . . . 8 ({𝑤𝐵𝑤𝑅𝑧} = ∅ ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧)
3 breq1 5073 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝑦𝑅𝑥𝑤𝑅𝑥))
43notbid 317 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑤𝑅𝑥))
54cbvralvw 3372 . . . . . . . . . . . 12 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑥)
6 breq2 5074 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑤𝑅𝑥𝑤𝑅𝑧))
76notbid 317 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (¬ 𝑤𝑅𝑥 ↔ ¬ 𝑤𝑅𝑧))
87ralbidv 3120 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
95, 8syl5bb 282 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
109rspcev 3552 . . . . . . . . . 10 ((𝑧𝐵 ∧ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
1110ex 412 . . . . . . . . 9 (𝑧𝐵 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
1211ad2antll 725 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
132, 12syl5bi 241 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} = ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
14 simprl 767 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝐵𝐴)
15 simplr 765 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐴)
16 sess2 5549 . . . . . . . . . . 11 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
1714, 15, 16sylc 65 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐵)
18 simprr 769 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑧𝐵)
19 seex 5542 . . . . . . . . . 10 ((𝑅 Se 𝐵𝑧𝐵) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
2017, 18, 19syl2anc 583 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
21 wefr 5570 . . . . . . . . . 10 (𝑅 We 𝐴𝑅 Fr 𝐴)
2221ad2antrr 722 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Fr 𝐴)
23 ssrab2 4009 . . . . . . . . . 10 {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐵
2423, 14sstrid 3928 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴)
25 fri 5540 . . . . . . . . . 10 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴 ∧ {𝑤𝐵𝑤𝑅𝑧} ≠ ∅)) → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥)
2625expr 456 . . . . . . . . 9 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
2720, 22, 24, 26syl21anc 834 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
28 breq1 5073 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤𝑅𝑧𝑥𝑅𝑧))
2928rexrab 3626 . . . . . . . . 9 (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
30 breq1 5073 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
3130ralrab 3623 . . . . . . . . . . . 12 (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
32 weso 5571 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 We 𝐴𝑅 Or 𝐴)
3332ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Or 𝐴)
34 soss 5514 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
3514, 33, 34sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Or 𝐵)
3635ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑅 Or 𝐵)
37 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
38 simplr 765 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
3918ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑧𝐵)
40 sotr 5518 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐵 ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4136, 37, 38, 39, 40syl13anc 1370 . . . . . . . . . . . . . . . . . 18 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4241ancomsd 465 . . . . . . . . . . . . . . . . 17 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥𝑅𝑧𝑦𝑅𝑥) → 𝑦𝑅𝑧))
4342expdimp 452 . . . . . . . . . . . . . . . 16 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑥𝑅𝑧) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4443an32s 648 . . . . . . . . . . . . . . 15 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4544con3d 152 . . . . . . . . . . . . . 14 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
46 idd 24 . . . . . . . . . . . . . 14 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑥 → ¬ 𝑦𝑅𝑥))
4745, 46jad 187 . . . . . . . . . . . . 13 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → ((𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
4847ralimdva 3102 . . . . . . . . . . . 12 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
4931, 48syl5bi 241 . . . . . . . . . . 11 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5049expimpd 453 . . . . . . . . . 10 ((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) → ((𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5150reximdva 3202 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5229, 51syl5bi 241 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5327, 52syld 47 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5413, 53pm2.61dne 3030 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5554expr 456 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5655exlimdv 1937 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (∃𝑧 𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
571, 56syl5bi 241 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5857impr 454 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
59 simprl 767 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐴)
6032ad2antrr 722 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐴)
6159, 60, 34sylc 65 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐵)
62 somo 5531 . . 3 (𝑅 Or 𝐵 → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
6361, 62syl 17 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
64 reu5 3351 . 2 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
6558, 63, 64sylanbrc 582 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066  {crab 3067  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070   Or wor 5493   Fr wfr 5532   Se wse 5533   We wwe 5534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537
This theorem is referenced by:  tz6.26OLD  6236  weniso  7205  ordtypelem3  9209  dfac8clem  9719
  Copyright terms: Public domain W3C validator