MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu2 Structured version   Visualization version   GIF version

Theorem wereu2 5651
Description: A nonempty subclass of an 𝑅-well-ordered and 𝑅-setlike class has a unique 𝑅-minimal element. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
wereu2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem wereu2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4328 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
2 rabeq0 4363 . . . . . . . 8 ({𝑤𝐵𝑤𝑅𝑧} = ∅ ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧)
3 breq1 5122 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝑦𝑅𝑥𝑤𝑅𝑥))
43notbid 318 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑤𝑅𝑥))
54cbvralvw 3220 . . . . . . . . . . . 12 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑥)
6 breq2 5123 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑤𝑅𝑥𝑤𝑅𝑧))
76notbid 318 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (¬ 𝑤𝑅𝑥 ↔ ¬ 𝑤𝑅𝑧))
87ralbidv 3163 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
95, 8bitrid 283 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
109rspcev 3601 . . . . . . . . . 10 ((𝑧𝐵 ∧ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
1110ex 412 . . . . . . . . 9 (𝑧𝐵 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
1211ad2antll 729 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
132, 12biimtrid 242 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} = ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
14 simprl 770 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝐵𝐴)
15 simplr 768 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐴)
16 sess2 5620 . . . . . . . . . . 11 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
1714, 15, 16sylc 65 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐵)
18 simprr 772 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑧𝐵)
19 seex 5613 . . . . . . . . . 10 ((𝑅 Se 𝐵𝑧𝐵) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
2017, 18, 19syl2anc 584 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
21 wefr 5644 . . . . . . . . . 10 (𝑅 We 𝐴𝑅 Fr 𝐴)
2221ad2antrr 726 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Fr 𝐴)
23 ssrab2 4055 . . . . . . . . . 10 {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐵
2423, 14sstrid 3970 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴)
25 fri 5611 . . . . . . . . . 10 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴 ∧ {𝑤𝐵𝑤𝑅𝑧} ≠ ∅)) → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥)
2625expr 456 . . . . . . . . 9 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
2720, 22, 24, 26syl21anc 837 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
28 breq1 5122 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤𝑅𝑧𝑥𝑅𝑧))
2928rexrab 3679 . . . . . . . . 9 (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
30 breq1 5122 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
3130ralrab 3677 . . . . . . . . . . . 12 (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
32 weso 5645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 We 𝐴𝑅 Or 𝐴)
3332ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Or 𝐴)
34 soss 5581 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
3514, 33, 34sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Or 𝐵)
3635ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑅 Or 𝐵)
37 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
38 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
3918ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑧𝐵)
40 sotr 5586 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐵 ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4136, 37, 38, 39, 40syl13anc 1374 . . . . . . . . . . . . . . . . . 18 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4241ancomsd 465 . . . . . . . . . . . . . . . . 17 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥𝑅𝑧𝑦𝑅𝑥) → 𝑦𝑅𝑧))
4342expdimp 452 . . . . . . . . . . . . . . . 16 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑥𝑅𝑧) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4443an32s 652 . . . . . . . . . . . . . . 15 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4544con3d 152 . . . . . . . . . . . . . 14 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
46 idd 24 . . . . . . . . . . . . . 14 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑥 → ¬ 𝑦𝑅𝑥))
4745, 46jad 187 . . . . . . . . . . . . 13 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → ((𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
4847ralimdva 3152 . . . . . . . . . . . 12 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
4931, 48biimtrid 242 . . . . . . . . . . 11 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5049expimpd 453 . . . . . . . . . 10 ((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) → ((𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5150reximdva 3153 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5229, 51biimtrid 242 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5327, 52syld 47 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5413, 53pm2.61dne 3018 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5554expr 456 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5655exlimdv 1933 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (∃𝑧 𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
571, 56biimtrid 242 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5857impr 454 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
59 simprl 770 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐴)
6032ad2antrr 726 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐴)
6159, 60, 34sylc 65 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐵)
62 somo 5600 . . 3 (𝑅 Or 𝐵 → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
6361, 62syl 17 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
64 reu5 3361 . 2 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
6558, 63, 64sylanbrc 583 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  ∃!wreu 3357  ∃*wrmo 3358  {crab 3415  Vcvv 3459  wss 3926  c0 4308   class class class wbr 5119   Or wor 5560   Fr wfr 5603   Se wse 5604   We wwe 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608
This theorem is referenced by:  tz6.26OLD  6337  weniso  7347  ordtypelem3  9534  dfac8clem  10046  weiunlem2  36481  weiunfrlem  36482
  Copyright terms: Public domain W3C validator