MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu2 Structured version   Visualization version   GIF version

Theorem wereu2 5635
Description: A nonempty subclass of an 𝑅-well-ordered and 𝑅-setlike class has a unique 𝑅-minimal element. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
wereu2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem wereu2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4316 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
2 rabeq0 4351 . . . . . . . 8 ({𝑤𝐵𝑤𝑅𝑧} = ∅ ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧)
3 breq1 5110 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝑦𝑅𝑥𝑤𝑅𝑥))
43notbid 318 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑤𝑅𝑥))
54cbvralvw 3215 . . . . . . . . . . . 12 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑥)
6 breq2 5111 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑤𝑅𝑥𝑤𝑅𝑧))
76notbid 318 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (¬ 𝑤𝑅𝑥 ↔ ¬ 𝑤𝑅𝑧))
87ralbidv 3156 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
95, 8bitrid 283 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧))
109rspcev 3588 . . . . . . . . . 10 ((𝑧𝐵 ∧ ∀𝑤𝐵 ¬ 𝑤𝑅𝑧) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
1110ex 412 . . . . . . . . 9 (𝑧𝐵 → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
1211ad2antll 729 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∀𝑤𝐵 ¬ 𝑤𝑅𝑧 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
132, 12biimtrid 242 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} = ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
14 simprl 770 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝐵𝐴)
15 simplr 768 . . . . . . . . . . 11 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐴)
16 sess2 5604 . . . . . . . . . . 11 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
1714, 15, 16sylc 65 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Se 𝐵)
18 simprr 772 . . . . . . . . . 10 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑧𝐵)
19 seex 5597 . . . . . . . . . 10 ((𝑅 Se 𝐵𝑧𝐵) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
2017, 18, 19syl2anc 584 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ∈ V)
21 wefr 5628 . . . . . . . . . 10 (𝑅 We 𝐴𝑅 Fr 𝐴)
2221ad2antrr 726 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Fr 𝐴)
23 ssrab2 4043 . . . . . . . . . 10 {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐵
2423, 14sstrid 3958 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴)
25 fri 5596 . . . . . . . . . 10 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴 ∧ {𝑤𝐵𝑤𝑅𝑧} ≠ ∅)) → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥)
2625expr 456 . . . . . . . . 9 ((({𝑤𝐵𝑤𝑅𝑧} ∈ V ∧ 𝑅 Fr 𝐴) ∧ {𝑤𝐵𝑤𝑅𝑧} ⊆ 𝐴) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
2720, 22, 24, 26syl21anc 837 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
28 breq1 5110 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤𝑅𝑧𝑥𝑅𝑧))
2928rexrab 3667 . . . . . . . . 9 (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥))
30 breq1 5110 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
3130ralrab 3665 . . . . . . . . . . . 12 (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
32 weso 5629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 We 𝐴𝑅 Or 𝐴)
3332ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Or 𝐴)
34 soss 5566 . . . . . . . . . . . . . . . . . . . . 21 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
3514, 33, 34sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → 𝑅 Or 𝐵)
3635ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑅 Or 𝐵)
37 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
38 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
3918ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑧𝐵)
40 sotr 5571 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Or 𝐵 ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4136, 37, 38, 39, 40syl13anc 1374 . . . . . . . . . . . . . . . . . 18 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑦𝑅𝑥𝑥𝑅𝑧) → 𝑦𝑅𝑧))
4241ancomsd 465 . . . . . . . . . . . . . . . . 17 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥𝑅𝑧𝑦𝑅𝑥) → 𝑦𝑅𝑧))
4342expdimp 452 . . . . . . . . . . . . . . . 16 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑦𝐵) ∧ 𝑥𝑅𝑧) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4443an32s 652 . . . . . . . . . . . . . . 15 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (𝑦𝑅𝑥𝑦𝑅𝑧))
4544con3d 152 . . . . . . . . . . . . . 14 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥))
46 idd 24 . . . . . . . . . . . . . 14 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → (¬ 𝑦𝑅𝑥 → ¬ 𝑦𝑅𝑥))
4745, 46jad 187 . . . . . . . . . . . . 13 ((((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) ∧ 𝑦𝐵) → ((𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ¬ 𝑦𝑅𝑥))
4847ralimdva 3145 . . . . . . . . . . . 12 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦𝐵 (𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
4931, 48biimtrid 242 . . . . . . . . . . 11 (((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) ∧ 𝑥𝑅𝑧) → (∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5049expimpd 453 . . . . . . . . . 10 ((((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) ∧ 𝑥𝐵) → ((𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
5150reximdva 3146 . . . . . . . . 9 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥𝐵 (𝑥𝑅𝑧 ∧ ∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5229, 51biimtrid 242 . . . . . . . 8 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → (∃𝑥 ∈ {𝑤𝐵𝑤𝑅𝑧}∀𝑦 ∈ {𝑤𝐵𝑤𝑅𝑧} ¬ 𝑦𝑅𝑥 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5327, 52syld 47 . . . . . . 7 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ({𝑤𝐵𝑤𝑅𝑧} ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5413, 53pm2.61dne 3011 . . . . . 6 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝑧𝐵)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5554expr 456 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5655exlimdv 1933 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (∃𝑧 𝑧𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
571, 56biimtrid 242 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝐵𝐴) → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
5857impr 454 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
59 simprl 770 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝐵𝐴)
6032ad2antrr 726 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐴)
6159, 60, 34sylc 65 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐵)
62 somo 5585 . . 3 (𝑅 Or 𝐵 → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
6361, 62syl 17 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
64 reu5 3356 . 2 (∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∃*𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
6558, 63, 64sylanbrc 583 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  ∃*wrmo 3353  {crab 3405  Vcvv 3447  wss 3914  c0 4296   class class class wbr 5107   Or wor 5545   Fr wfr 5588   Se wse 5589   We wwe 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593
This theorem is referenced by:  weniso  7329  ordtypelem3  9473  dfac8clem  9985  weiunlem2  36451  weiunfrlem  36452
  Copyright terms: Public domain W3C validator