MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfz Structured version   Visualization version   GIF version

Theorem suppssfz 14045
Description: Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
suppssfz.z (𝜑𝑍𝑉)
suppssfz.f (𝜑𝐹 ∈ (𝐵m0))
suppssfz.s (𝜑𝑆 ∈ ℕ0)
suppssfz.b (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
Assertion
Ref Expression
suppssfz (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfz
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 suppssfz.b . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
2 suppssfz.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐵m0))
3 elmapfn 8923 . . . . . . . 8 (𝐹 ∈ (𝐵m0) → 𝐹 Fn ℕ0)
42, 3syl 17 . . . . . . 7 (𝜑𝐹 Fn ℕ0)
5 nn0ex 12559 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
7 suppssfz.z . . . . . . 7 (𝜑𝑍𝑉)
84, 6, 73jca 1128 . . . . . 6 (𝜑 → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
98adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
10 elsuppfn 8211 . . . . 5 ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
119, 10syl 17 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
12 breq2 5170 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑆 < 𝑥𝑆 < 𝑛))
13 fveqeq2 6929 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑛) = 𝑍))
1412, 13imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) ↔ (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍)))
1514rspcva 3633 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍))
16 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ ℕ0)
17 suppssfz.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
1817adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑆 ∈ ℕ0)
1918adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑆 ∈ ℕ0)
20 nn0re 12562 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
21 nn0re 12562 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
2217, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℝ)
23 lenlt 11368 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2420, 22, 23syl2anr 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2524biimpar 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛𝑆)
26 elfz2nn0 13675 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑆) ↔ (𝑛 ∈ ℕ0𝑆 ∈ ℕ0𝑛𝑆))
2716, 19, 25, 26syl3anbrc 1343 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ (0...𝑆))
2827a1d 25 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
2928ex 412 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (¬ 𝑆 < 𝑛 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
30 eqneqall 2957 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3229, 31jad 187 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3332com23 86 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆))))
3433ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆)))))
3534com14 96 . . . . . . . . . . 11 ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3615, 35syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3736ex 412 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆))))))
3837pm2.43a 54 . . . . . . . 8 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3938com23 86 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆)))))
4039imp 406 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆))))
4140com13 88 . . . . 5 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆))))
4241imp 406 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆)))
4311, 42sylbid 240 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) → 𝑛 ∈ (0...𝑆)))
4443ssrdv 4014 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (0...𝑆))
451, 44mpdan 686 1 (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976   class class class wbr 5166   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  cr 11183  0cc0 11184   < clt 11324  cle 11325  0cn0 12553  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  fsuppmapnn0fz  14047  fsfnn0gsumfsffz  20025
  Copyright terms: Public domain W3C validator