MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfz Structured version   Visualization version   GIF version

Theorem suppssfz 13352
Description: Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
suppssfz.z (𝜑𝑍𝑉)
suppssfz.f (𝜑𝐹 ∈ (𝐵m0))
suppssfz.s (𝜑𝑆 ∈ ℕ0)
suppssfz.b (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
Assertion
Ref Expression
suppssfz (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfz
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 suppssfz.b . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
2 suppssfz.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐵m0))
3 elmapfn 8419 . . . . . . . 8 (𝐹 ∈ (𝐵m0) → 𝐹 Fn ℕ0)
42, 3syl 17 . . . . . . 7 (𝜑𝐹 Fn ℕ0)
5 nn0ex 11892 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
7 suppssfz.z . . . . . . 7 (𝜑𝑍𝑉)
84, 6, 73jca 1122 . . . . . 6 (𝜑 → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
98adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
10 elsuppfn 7829 . . . . 5 ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
119, 10syl 17 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
12 breq2 5067 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑆 < 𝑥𝑆 < 𝑛))
13 fveqeq2 6676 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑛) = 𝑍))
1412, 13imbi12d 346 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) ↔ (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍)))
1514rspcva 3625 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍))
16 simplr 765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ ℕ0)
17 suppssfz.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
1817adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑆 ∈ ℕ0)
1918adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑆 ∈ ℕ0)
20 nn0re 11895 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
21 nn0re 11895 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
2217, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℝ)
23 lenlt 10708 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2420, 22, 23syl2anr 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2524biimpar 478 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛𝑆)
26 elfz2nn0 12988 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑆) ↔ (𝑛 ∈ ℕ0𝑆 ∈ ℕ0𝑛𝑆))
2716, 19, 25, 26syl3anbrc 1337 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ (0...𝑆))
2827a1d 25 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
2928ex 413 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (¬ 𝑆 < 𝑛 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
30 eqneqall 3032 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3229, 31jad 188 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3332com23 86 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆))))
3433ex 413 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆)))))
3534com14 96 . . . . . . . . . . 11 ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3615, 35syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3736ex 413 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆))))))
3837pm2.43a 54 . . . . . . . 8 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3938com23 86 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆)))))
4039imp 407 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆))))
4140com13 88 . . . . 5 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆))))
4241imp 407 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆)))
4311, 42sylbid 241 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) → 𝑛 ∈ (0...𝑆)))
4443ssrdv 3977 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (0...𝑆))
451, 44mpdan 683 1 (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  Vcvv 3500  wss 3940   class class class wbr 5063   Fn wfn 6347  cfv 6352  (class class class)co 7148   supp csupp 7821  m cmap 8396  cr 10525  0cc0 10526   < clt 10664  cle 10665  0cn0 11886  ...cfz 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883
This theorem is referenced by:  fsuppmapnn0fz  13354  fsfnn0gsumfsffz  19023
  Copyright terms: Public domain W3C validator