MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfz Structured version   Visualization version   GIF version

Theorem suppssfz 13411
Description: Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
suppssfz.z (𝜑𝑍𝑉)
suppssfz.f (𝜑𝐹 ∈ (𝐵m0))
suppssfz.s (𝜑𝑆 ∈ ℕ0)
suppssfz.b (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
Assertion
Ref Expression
suppssfz (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfz
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 suppssfz.b . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
2 suppssfz.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐵m0))
3 elmapfn 8447 . . . . . . . 8 (𝐹 ∈ (𝐵m0) → 𝐹 Fn ℕ0)
42, 3syl 17 . . . . . . 7 (𝜑𝐹 Fn ℕ0)
5 nn0ex 11940 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
7 suppssfz.z . . . . . . 7 (𝜑𝑍𝑉)
84, 6, 73jca 1125 . . . . . 6 (𝜑 → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
98adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
10 elsuppfn 7845 . . . . 5 ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
119, 10syl 17 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
12 breq2 5036 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑆 < 𝑥𝑆 < 𝑛))
13 fveqeq2 6667 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑛) = 𝑍))
1412, 13imbi12d 348 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) ↔ (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍)))
1514rspcva 3539 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍))
16 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ ℕ0)
17 suppssfz.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
1817adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑆 ∈ ℕ0)
1918adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑆 ∈ ℕ0)
20 nn0re 11943 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
21 nn0re 11943 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
2217, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℝ)
23 lenlt 10757 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2420, 22, 23syl2anr 599 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2524biimpar 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛𝑆)
26 elfz2nn0 13047 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑆) ↔ (𝑛 ∈ ℕ0𝑆 ∈ ℕ0𝑛𝑆))
2716, 19, 25, 26syl3anbrc 1340 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ (0...𝑆))
2827a1d 25 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
2928ex 416 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (¬ 𝑆 < 𝑛 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
30 eqneqall 2962 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3229, 31jad 190 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3332com23 86 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆))))
3433ex 416 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆)))))
3534com14 96 . . . . . . . . . . 11 ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3615, 35syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3736ex 416 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆))))))
3837pm2.43a 54 . . . . . . . 8 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3938com23 86 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆)))))
4039imp 410 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆))))
4140com13 88 . . . . 5 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆))))
4241imp 410 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆)))
4311, 42sylbid 243 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) → 𝑛 ∈ (0...𝑆)))
4443ssrdv 3898 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (0...𝑆))
451, 44mpdan 686 1 (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  Vcvv 3409  wss 3858   class class class wbr 5032   Fn wfn 6330  cfv 6335  (class class class)co 7150   supp csupp 7835  m cmap 8416  cr 10574  0cc0 10575   < clt 10713  cle 10714  0cn0 11934  ...cfz 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940
This theorem is referenced by:  fsuppmapnn0fz  13413  fsfnn0gsumfsffz  19171
  Copyright terms: Public domain W3C validator