| Step | Hyp | Ref
| Expression |
| 1 | | suppssfz.b |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
| 2 | | suppssfz.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m
ℕ0)) |
| 3 | | elmapfn 8905 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐵 ↑m ℕ0)
→ 𝐹 Fn
ℕ0) |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ℕ0) |
| 5 | | nn0ex 12532 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
| 6 | 5 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℕ0 ∈
V) |
| 7 | | suppssfz.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 8 | 4, 6, 7 | 3jca 1129 |
. . . . . 6
⊢ (𝜑 → (𝐹 Fn ℕ0 ∧
ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉)) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝐹 Fn ℕ0 ∧
ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉)) |
| 10 | | elsuppfn 8195 |
. . . . 5
⊢ ((𝐹 Fn ℕ0 ∧
ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≠ 𝑍))) |
| 11 | 9, 10 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≠ 𝑍))) |
| 12 | | breq2 5147 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (𝑆 < 𝑥 ↔ 𝑆 < 𝑛)) |
| 13 | | fveqeq2 6915 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑥) = 𝑍 ↔ (𝐹‘𝑛) = 𝑍)) |
| 14 | 12, 13 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → ((𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍) ↔ (𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍))) |
| 15 | 14 | rspcva 3620 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑆 <
𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍)) |
| 16 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → 𝑛 ∈ ℕ0) |
| 17 | | suppssfz.s |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑆 ∈
ℕ0) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → 𝑆 ∈
ℕ0) |
| 20 | | nn0re 12535 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
| 21 | | nn0re 12535 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑆 ∈ ℕ0
→ 𝑆 ∈
ℝ) |
| 22 | 17, 21 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 23 | | lenlt 11339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑛 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑛)) |
| 24 | 20, 22, 23 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑛)) |
| 25 | 24 | biimpar 477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → 𝑛 ≤ 𝑆) |
| 26 | | elfz2nn0 13658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (0...𝑆) ↔ (𝑛 ∈ ℕ0 ∧ 𝑆 ∈ ℕ0
∧ 𝑛 ≤ 𝑆)) |
| 27 | 16, 19, 25, 26 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → 𝑛 ∈ (0...𝑆)) |
| 28 | 27 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆))) |
| 29 | 28 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (¬
𝑆 < 𝑛 → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆)))) |
| 30 | | eqneqall 2951 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) = 𝑍 → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆))) |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐹‘𝑛) = 𝑍 → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆)))) |
| 32 | 29, 31 | jad 187 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍) → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆)))) |
| 33 | 32 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐹‘𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆)))) |
| 34 | 33 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ ℕ0 → ((𝐹‘𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆))))) |
| 35 | 34 | com14 96 |
. . . . . . . . . . 11
⊢ ((𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹‘𝑛) ≠ 𝑍 → (𝜑 → 𝑛 ∈ (0...𝑆))))) |
| 36 | 15, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑆 <
𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝑛 ∈ ℕ0 → ((𝐹‘𝑛) ≠ 𝑍 → (𝜑 → 𝑛 ∈ (0...𝑆))))) |
| 37 | 36 | ex 412 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 (𝑆 <
𝑥 → (𝐹‘𝑥) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹‘𝑛) ≠ 𝑍 → (𝜑 → 𝑛 ∈ (0...𝑆)))))) |
| 38 | 37 | pm2.43a 54 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 (𝑆 <
𝑥 → (𝐹‘𝑥) = 𝑍) → ((𝐹‘𝑛) ≠ 𝑍 → (𝜑 → 𝑛 ∈ (0...𝑆))))) |
| 39 | 38 | com23 86 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ ((𝐹‘𝑛) ≠ 𝑍 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍) → (𝜑 → 𝑛 ∈ (0...𝑆))))) |
| 40 | 39 | imp 406 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ (𝐹‘𝑛) ≠ 𝑍) → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍) → (𝜑 → 𝑛 ∈ (0...𝑆)))) |
| 41 | 40 | com13 88 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℕ0
(𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍) → ((𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆)))) |
| 42 | 41 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → ((𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆))) |
| 43 | 11, 42 | sylbid 240 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) → 𝑛 ∈ (0...𝑆))) |
| 44 | 43 | ssrdv 3989 |
. 2
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (0...𝑆)) |
| 45 | 1, 44 | mpdan 687 |
1
⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆)) |