Step | Hyp | Ref
| Expression |
1 | | suppssfz.b |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) |
2 | | suppssfz.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m
ℕ0)) |
3 | | elmapfn 8611 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐵 ↑m ℕ0)
→ 𝐹 Fn
ℕ0) |
4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn ℕ0) |
5 | | nn0ex 12169 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
6 | 5 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℕ0 ∈
V) |
7 | | suppssfz.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
8 | 4, 6, 7 | 3jca 1126 |
. . . . . 6
⊢ (𝜑 → (𝐹 Fn ℕ0 ∧
ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉)) |
9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝐹 Fn ℕ0 ∧
ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉)) |
10 | | elsuppfn 7958 |
. . . . 5
⊢ ((𝐹 Fn ℕ0 ∧
ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≠ 𝑍))) |
11 | 9, 10 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≠ 𝑍))) |
12 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (𝑆 < 𝑥 ↔ 𝑆 < 𝑛)) |
13 | | fveqeq2 6765 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑥) = 𝑍 ↔ (𝐹‘𝑛) = 𝑍)) |
14 | 12, 13 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → ((𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍) ↔ (𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍))) |
15 | 14 | rspcva 3550 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑆 <
𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍)) |
16 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → 𝑛 ∈ ℕ0) |
17 | | suppssfz.s |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑆 ∈
ℕ0) |
19 | 18 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → 𝑆 ∈
ℕ0) |
20 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
21 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑆 ∈ ℕ0
→ 𝑆 ∈
ℝ) |
22 | 17, 21 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑆 ∈ ℝ) |
23 | | lenlt 10984 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑛 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑛)) |
24 | 20, 22, 23 | syl2anr 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑛)) |
25 | 24 | biimpar 477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → 𝑛 ≤ 𝑆) |
26 | | elfz2nn0 13276 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (0...𝑆) ↔ (𝑛 ∈ ℕ0 ∧ 𝑆 ∈ ℕ0
∧ 𝑛 ≤ 𝑆)) |
27 | 16, 19, 25, 26 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → 𝑛 ∈ (0...𝑆)) |
28 | 27 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑆 < 𝑛) → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆))) |
29 | 28 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (¬
𝑆 < 𝑛 → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆)))) |
30 | | eqneqall 2953 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) = 𝑍 → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆))) |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐹‘𝑛) = 𝑍 → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆)))) |
32 | 29, 31 | jad 187 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍) → ((𝐹‘𝑛) ≠ 𝑍 → 𝑛 ∈ (0...𝑆)))) |
33 | 32 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐹‘𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆)))) |
34 | 33 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ ℕ0 → ((𝐹‘𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆))))) |
35 | 34 | com14 96 |
. . . . . . . . . . 11
⊢ ((𝑆 < 𝑛 → (𝐹‘𝑛) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹‘𝑛) ≠ 𝑍 → (𝜑 → 𝑛 ∈ (0...𝑆))))) |
36 | 15, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑆 <
𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝑛 ∈ ℕ0 → ((𝐹‘𝑛) ≠ 𝑍 → (𝜑 → 𝑛 ∈ (0...𝑆))))) |
37 | 36 | ex 412 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 (𝑆 <
𝑥 → (𝐹‘𝑥) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹‘𝑛) ≠ 𝑍 → (𝜑 → 𝑛 ∈ (0...𝑆)))))) |
38 | 37 | pm2.43a 54 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 (𝑆 <
𝑥 → (𝐹‘𝑥) = 𝑍) → ((𝐹‘𝑛) ≠ 𝑍 → (𝜑 → 𝑛 ∈ (0...𝑆))))) |
39 | 38 | com23 86 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ ((𝐹‘𝑛) ≠ 𝑍 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍) → (𝜑 → 𝑛 ∈ (0...𝑆))))) |
40 | 39 | imp 406 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ (𝐹‘𝑛) ≠ 𝑍) → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍) → (𝜑 → 𝑛 ∈ (0...𝑆)))) |
41 | 40 | com13 88 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℕ0
(𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍) → ((𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆)))) |
42 | 41 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → ((𝑛 ∈ ℕ0 ∧ (𝐹‘𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆))) |
43 | 11, 42 | sylbid 239 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) → 𝑛 ∈ (0...𝑆))) |
44 | 43 | ssrdv 3923 |
. 2
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (0...𝑆)) |
45 | 1, 44 | mpdan 683 |
1
⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆)) |