MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssfz Structured version   Visualization version   GIF version

Theorem suppssfz 13642
Description: Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
suppssfz.z (𝜑𝑍𝑉)
suppssfz.f (𝜑𝐹 ∈ (𝐵m0))
suppssfz.s (𝜑𝑆 ∈ ℕ0)
suppssfz.b (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
Assertion
Ref Expression
suppssfz (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfz
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 suppssfz.b . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍))
2 suppssfz.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐵m0))
3 elmapfn 8611 . . . . . . . 8 (𝐹 ∈ (𝐵m0) → 𝐹 Fn ℕ0)
42, 3syl 17 . . . . . . 7 (𝜑𝐹 Fn ℕ0)
5 nn0ex 12169 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ0 ∈ V)
7 suppssfz.z . . . . . . 7 (𝜑𝑍𝑉)
84, 6, 73jca 1126 . . . . . 6 (𝜑 → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
98adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉))
10 elsuppfn 7958 . . . . 5 ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
119, 10syl 17 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) ↔ (𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍)))
12 breq2 5074 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑆 < 𝑥𝑆 < 𝑛))
13 fveqeq2 6765 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑛) = 𝑍))
1412, 13imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) ↔ (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍)))
1514rspcva 3550 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑆 < 𝑛 → (𝐹𝑛) = 𝑍))
16 simplr 765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ ℕ0)
17 suppssfz.s . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℕ0)
1817adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → 𝑆 ∈ ℕ0)
1918adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑆 ∈ ℕ0)
20 nn0re 12172 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
21 nn0re 12172 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
2217, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ∈ ℝ)
23 lenlt 10984 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2420, 22, 23syl2anr 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ0) → (𝑛𝑆 ↔ ¬ 𝑆 < 𝑛))
2524biimpar 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛𝑆)
26 elfz2nn0 13276 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...𝑆) ↔ (𝑛 ∈ ℕ0𝑆 ∈ ℕ0𝑛𝑆))
2716, 19, 25, 26syl3anbrc 1341 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → 𝑛 ∈ (0...𝑆))
2827a1d 25 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ¬ 𝑆 < 𝑛) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
2928ex 412 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (¬ 𝑆 < 𝑛 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
30 eqneqall 2953 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆)))
3130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) = 𝑍 → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3229, 31jad 187 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → ((𝐹𝑛) ≠ 𝑍𝑛 ∈ (0...𝑆))))
3332com23 86 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆))))
3433ex 412 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → 𝑛 ∈ (0...𝑆)))))
3534com14 96 . . . . . . . . . . 11 ((𝑆 < 𝑛 → (𝐹𝑛) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3615, 35syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3736ex 412 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆))))))
3837pm2.43a 54 . . . . . . . 8 (𝑛 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝐹𝑛) ≠ 𝑍 → (𝜑𝑛 ∈ (0...𝑆)))))
3938com23 86 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝐹𝑛) ≠ 𝑍 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆)))))
4039imp 406 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → (𝜑𝑛 ∈ (0...𝑆))))
4140com13 88 . . . . 5 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆))))
4241imp 406 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → ((𝑛 ∈ ℕ0 ∧ (𝐹𝑛) ≠ 𝑍) → 𝑛 ∈ (0...𝑆)))
4311, 42sylbid 239 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝑛 ∈ (𝐹 supp 𝑍) → 𝑛 ∈ (0...𝑆)))
4443ssrdv 3923 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (0...𝑆))
451, 44mpdan 683 1 (𝜑 → (𝐹 supp 𝑍) ⊆ (0...𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070   Fn wfn 6413  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  cr 10801  0cc0 10802   < clt 10940  cle 10941  0cn0 12163  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  fsuppmapnn0fz  13644  fsfnn0gsumfsffz  19499
  Copyright terms: Public domain W3C validator