MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin7-2 Structured version   Visualization version   GIF version

Theorem isfin7-2 10356
Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin7-2 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))

Proof of Theorem isfin7-2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfin7 10261 . . . 4 (𝐴 ∈ FinVII → (𝐴 ∈ FinVII ↔ ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
21ibi 267 . . 3 (𝐴 ∈ FinVII → ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥)
3 isnum2 9905 . . . . 5 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 ensym 8977 . . . . . . . . 9 (𝑥𝐴𝐴𝑥)
5 simprl 770 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝑥 ∈ On)
6 enfi 9157 . . . . . . . . . . . . . . 15 (𝐴𝑥 → (𝐴 ∈ Fin ↔ 𝑥 ∈ Fin))
7 onfin 9185 . . . . . . . . . . . . . . 15 (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω))
86, 7sylan9bbr 510 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝐴𝑥) → (𝐴 ∈ Fin ↔ 𝑥 ∈ ω))
98biimprd 248 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴𝑥) → (𝑥 ∈ ω → 𝐴 ∈ Fin))
109con3d 152 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝐴𝑥) → (¬ 𝐴 ∈ Fin → ¬ 𝑥 ∈ ω))
1110impcom 407 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → ¬ 𝑥 ∈ ω)
125, 11eldifd 3928 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝑥 ∈ (On ∖ ω))
13 simprr 772 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝐴𝑥)
1412, 13jca 511 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥))
154, 14sylanr2 683 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ (𝑥 ∈ On ∧ 𝑥𝐴)) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥))
1615ex 412 . . . . . . 7 𝐴 ∈ Fin → ((𝑥 ∈ On ∧ 𝑥𝐴) → (𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥)))
1716reximdv2 3144 . . . . . 6 𝐴 ∈ Fin → (∃𝑥 ∈ On 𝑥𝐴 → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
1817com12 32 . . . . 5 (∃𝑥 ∈ On 𝑥𝐴 → (¬ 𝐴 ∈ Fin → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
193, 18sylbi 217 . . . 4 (𝐴 ∈ dom card → (¬ 𝐴 ∈ Fin → ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
2019con1d 145 . . 3 (𝐴 ∈ dom card → (¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥𝐴 ∈ Fin))
212, 20syl5com 31 . 2 (𝐴 ∈ FinVII → (𝐴 ∈ dom card → 𝐴 ∈ Fin))
22 eldifi 4097 . . . . . . 7 (𝑥 ∈ (On ∖ ω) → 𝑥 ∈ On)
23 ensym 8977 . . . . . . 7 (𝐴𝑥𝑥𝐴)
24 isnumi 9906 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
2522, 23, 24syl2an 596 . . . . . 6 ((𝑥 ∈ (On ∖ ω) ∧ 𝐴𝑥) → 𝐴 ∈ dom card)
2625rexlimiva 3127 . . . . 5 (∃𝑥 ∈ (On ∖ ω)𝐴𝑥𝐴 ∈ dom card)
2726con3i 154 . . . 4 𝐴 ∈ dom card → ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥)
28 isfin7 10261 . . . 4 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑥 ∈ (On ∖ ω)𝐴𝑥))
2927, 28imbitrrid 246 . . 3 (𝐴𝑉 → (¬ 𝐴 ∈ dom card → 𝐴 ∈ FinVII))
30 fin17 10354 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ FinVII)
3130a1i 11 . . 3 (𝐴𝑉 → (𝐴 ∈ Fin → 𝐴 ∈ FinVII))
3229, 31jad 187 . 2 (𝐴𝑉 → ((𝐴 ∈ dom card → 𝐴 ∈ Fin) → 𝐴 ∈ FinVII))
3321, 32impbid2 226 1 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wrex 3054  cdif 3914   class class class wbr 5110  dom cdm 5641  Oncon0 6335  ωcom 7845  cen 8918  Fincfn 8921  cardccrd 9895  FinVIIcfin7 10244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-fin7 10251
This theorem is referenced by:  fin71num  10357  dffin7-2  10358
  Copyright terms: Public domain W3C validator