MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlem3 Structured version   Visualization version   GIF version

Theorem pntlem3 27671
Description: Lemma for pnt 27676. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlem3.1 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
pntlem3.2 (𝜑𝐶 ∈ ℝ+)
pntlem3.3 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
Assertion
Ref Expression
pntlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐴   𝑢,𝑎,𝑥,𝑦,𝑧   𝑢,𝐶   𝑢,𝑡,𝑅,𝑥,𝑦,𝑧   𝑡,𝑎   𝑢,𝑇,𝑥   𝜑,𝑡,𝑥,𝑦,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑢,𝑎)   𝐶(𝑥,𝑦,𝑧,𝑡,𝑎)   𝑅(𝑎)   𝑇(𝑦,𝑧,𝑡,𝑎)

Proof of Theorem pntlem3
Dummy variables 𝑠 𝑤 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 13064 . . . 4 + ⊆ ℝ
2 eqid 2740 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32subcn 24907 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
43a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
5 ssid 4031 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
6 cncfmptid 24958 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
75, 5, 6mp2an 691 . . . . . . . . . . . 12 (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ)
87a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
9 pntlem3.2 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ+)
109adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℝ+)
1110rpcnd 13101 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℂ)
125a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ℂ ⊆ ℂ)
13 cncfmptc 24957 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
1411, 12, 12, 13syl3anc 1371 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
15 3nn0 12571 . . . . . . . . . . . . . 14 3 ∈ ℕ0
162expcn 24915 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1715, 16mp1i 13 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
182cncfcn1 24956 . . . . . . . . . . . . 13 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
1917, 18eleqtrrdi 2855 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ (ℂ–cn→ℂ))
2014, 19mulcncf 25499 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝐶 · (𝑝↑3))) ∈ (ℂ–cn→ℂ))
212, 4, 8, 20cncfmpt2f 24960 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ))
22 pntlem3.1 . . . . . . . . . . . . . . 15 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
2322ssrab3 4105 . . . . . . . . . . . . . 14 𝑇 ⊆ (0[,]𝐴)
24 0re 11292 . . . . . . . . . . . . . . 15 0 ∈ ℝ
25 pntlem3.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
2625rpred 13099 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
27 iccssre 13489 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0[,]𝐴) ⊆ ℝ)
2824, 26, 27sylancr 586 . . . . . . . . . . . . . 14 (𝜑 → (0[,]𝐴) ⊆ ℝ)
2923, 28sstrid 4020 . . . . . . . . . . . . 13 (𝜑𝑇 ⊆ ℝ)
30 0xr 11337 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
3125rpxrd 13100 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
3225rpge0d 13103 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝐴)
33 ubicc2 13525 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
3430, 31, 32, 33mp3an2i 1466 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (0[,]𝐴))
35 1rp 13061 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
36 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝑅𝑥) = (𝑅𝑧))
37 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧𝑥 = 𝑧)
3836, 37oveq12d 7466 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑧) / 𝑧))
3938fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑧) / 𝑧)))
4039breq1d 5176 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
41 pntlem3.A . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4241adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
43 1re 11290 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
44 elicopnf 13505 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℝ → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4543, 44mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4645simprbda 498 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ)
47 0red 11293 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 ∈ ℝ)
4843a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ∈ ℝ)
49 0lt1 11812 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
5049a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 1)
5145simplbda 499 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ≤ 𝑧)
5247, 48, 46, 50, 51ltletrd 11450 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 𝑧)
5346, 52elrpd 13096 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ+)
5440, 42, 53rspcdva 3636 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (1[,)+∞)) → (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5554ralrimiva 3152 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
56 oveq1 7455 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑦[,)+∞) = (1[,)+∞))
5756raleqdv 3334 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴 ↔ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
5857rspcev 3635 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5935, 55, 58sylancr 586 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
60 breq2 5170 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝐴 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6160rexralbidv 3229 . . . . . . . . . . . . . . . 16 (𝑡 = 𝐴 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6261, 22elrab2 3711 . . . . . . . . . . . . . . 15 (𝐴𝑇 ↔ (𝐴 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6334, 59, 62sylanbrc 582 . . . . . . . . . . . . . 14 (𝜑𝐴𝑇)
6463ne0d 4365 . . . . . . . . . . . . 13 (𝜑𝑇 ≠ ∅)
65 elicc2 13472 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6624, 26, 65sylancr 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6766biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]𝐴)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴))
6867simp2d 1143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]𝐴)) → 0 ≤ 𝑡)
6968a1d 25 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7069ralrimiva 3152 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7122raleqi 3332 . . . . . . . . . . . . . . . 16 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤)
72 breq2 5170 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑡 → (0 ≤ 𝑤 ↔ 0 ≤ 𝑡))
7372ralrab2 3720 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7471, 73bitri 275 . . . . . . . . . . . . . . 15 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7570, 74sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑤𝑇 0 ≤ 𝑤)
76 breq1 5169 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
7776ralbidv 3184 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (∀𝑤𝑇 𝑥𝑤 ↔ ∀𝑤𝑇 0 ≤ 𝑤))
7877rspcev 3635 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ∀𝑤𝑇 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
7924, 75, 78sylancr 586 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
80 infrecl 12277 . . . . . . . . . . . . 13 ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) → inf(𝑇, ℝ, < ) ∈ ℝ)
8129, 64, 79, 80syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℝ)
8281recnd 11318 . . . . . . . . . . 11 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℂ)
8382adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℂ)
84 elrp 13059 . . . . . . . . . . . . . 14 (inf(𝑇, ℝ, < ) ∈ ℝ+ ↔ (inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )))
8584biimpri 228 . . . . . . . . . . . . 13 ((inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
8681, 85sylan 579 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
87 3z 12676 . . . . . . . . . . . 12 3 ∈ ℤ
88 rpexpcl 14131 . . . . . . . . . . . 12 ((inf(𝑇, ℝ, < ) ∈ ℝ+ ∧ 3 ∈ ℤ) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
8986, 87, 88sylancl 585 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
9010, 89rpmulcld 13115 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+)
91 cncfi 24939 . . . . . . . . . 10 (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ) ∧ inf(𝑇, ℝ, < ) ∈ ℂ ∧ (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9221, 83, 90, 91syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9381ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
94 rphalfcl 13084 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ+ → (𝑠 / 2) ∈ ℝ+)
9594adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ+)
9693, 95ltaddrpd 13132 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))
9795rpred 13099 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ)
9893, 97readdcld 11319 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
9993, 98ltnled 11437 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
10096, 99mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ))
101 ax-resscn 11241 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
10229, 101sstrdi 4021 . . . . . . . . . . . . . 14 (𝜑𝑇 ⊆ ℂ)
103102ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℂ)
104 ssralv 4077 . . . . . . . . . . . . 13 (𝑇 ⊆ ℂ → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
105103, 104syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
10629ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
107106sselda 4008 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℝ)
10898adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
109107, 108ltnled 11437 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
11081ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ)
11197adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) ∈ ℝ)
112110, 111resubcld 11718 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) ∈ ℝ)
11393, 95ltsubrpd 13131 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
114113adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
11529ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑇 ⊆ ℝ)
11679ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
117 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢𝑇)
118 infrelb 12280 . . . . . . . . . . . . . . . . . . . . 21 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
119115, 116, 117, 118syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
120112, 110, 107, 114, 119ltletrd 11450 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢)
121107, 110, 111absdifltd 15482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ↔ ((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))))
122121biimprd 248 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2))) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
123120, 122mpand 694 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
124 rphalflt 13086 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ+ → (𝑠 / 2) < 𝑠)
125124ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) < 𝑠)
126107, 110resubcld 11718 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℝ)
127126recnd 11318 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℂ)
128127abscld 15485 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ)
129 rpre 13065 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
130129ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑠 ∈ ℝ)
131 lttr 11366 . . . . . . . . . . . . . . . . . . . 20 (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ ∧ (𝑠 / 2) ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
132128, 111, 130, 131syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
133125, 132mpan2d 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
134123, 133syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
135109, 134sylbird 260 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢 → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
136135con1d 145 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
137107recnd 11318 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℂ)
138 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢𝑝 = 𝑢)
139 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑢 → (𝑝↑3) = (𝑢↑3))
140139oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢 → (𝐶 · (𝑝↑3)) = (𝐶 · (𝑢↑3)))
141138, 140oveq12d 7466 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑢 → (𝑝 − (𝐶 · (𝑝↑3))) = (𝑢 − (𝐶 · (𝑢↑3))))
142 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) = (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))
143 ovex 7481 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 − (𝐶 · (𝑢↑3))) ∈ V
144141, 142, 143fvmpt 7029 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
145137, 144syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
14683ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℂ)
147 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → 𝑝 = inf(𝑇, ℝ, < ))
148 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝↑3) = (inf(𝑇, ℝ, < )↑3))
149148oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → (𝐶 · (𝑝↑3)) = (𝐶 · (inf(𝑇, ℝ, < )↑3)))
150147, 149oveq12d 7466 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝 − (𝐶 · (𝑝↑3))) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
151 ovex 7481 . . . . . . . . . . . . . . . . . . . . 21 (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ V
152150, 142, 151fvmpt 7029 . . . . . . . . . . . . . . . . . . . 20 (inf(𝑇, ℝ, < ) ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
153146, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
154145, 153oveq12d 7466 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < ))) = ((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
155154fveq2d 6924 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) = (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
156155breq1d 5176 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
1579rpred 13099 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
158157ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝐶 ∈ ℝ)
159 reexpcl 14129 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝑢↑3) ∈ ℝ)
160107, 15, 159sylancl 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢↑3) ∈ ℝ)
161158, 160remulcld 11320 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (𝑢↑3)) ∈ ℝ)
162107, 161resubcld 11718 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ ℝ)
16315a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 3 ∈ ℕ0)
164110, 163reexpcld 14213 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ)
165158, 164remulcld 11320 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ)
166110, 165resubcld 11718 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ ℝ)
167162, 166, 165absdifltd 15482 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
168165recnd 11318 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℂ)
169146, 168npcand 11651 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) = inf(𝑇, ℝ, < ))
170169breq2d 5178 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) ↔ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < )))
171 pntlem3.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
172171ad4ant14 751 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
173 infrelb 12280 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤 ∧ (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
174115, 116, 172, 173syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
175110, 162, 174lensymd 11441 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ¬ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ))
176175pm2.21d 121 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
177170, 176sylbid 240 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
178177adantld 490 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3)))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
179167, 178sylbid 240 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
180156, 179sylbid 240 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
181136, 180jad 187 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
182181ralimdva 3173 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
18364ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
18479ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
185 infregelb 12279 . . . . . . . . . . . . . 14 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
186106, 183, 184, 98, 185syl31anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
187182, 186sylibrd 259 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
188105, 187syld 47 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
189100, 188mtod 198 . . . . . . . . . 10 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ ∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
190189nrexdv 3155 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ¬ ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
19192, 190pm2.65da 816 . . . . . . . 8 (𝜑 → ¬ 0 < inf(𝑇, ℝ, < ))
192191adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ¬ 0 < inf(𝑇, ℝ, < ))
19329adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
19464adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
19579adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
196129adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ)
197 infregelb 12279 . . . . . . . . . 10 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ 𝑠 ∈ ℝ) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
198193, 194, 195, 196, 197syl31anc 1373 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
19922raleqi 3332 . . . . . . . . . 10 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤)
200 breq2 5170 . . . . . . . . . . 11 (𝑤 = 𝑡 → (𝑠𝑤𝑠𝑡))
201200ralrab2 3720 . . . . . . . . . 10 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
202199, 201bitri 275 . . . . . . . . 9 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
203198, 202bitrdi 287 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡)))
204 rpgt0 13069 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 < 𝑠)
205204adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 0 < 𝑠)
20681adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
207 ltletr 11382 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ inf(𝑇, ℝ, < ) ∈ ℝ) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
20824, 196, 206, 207mp3an2i 1466 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
209205, 208mpand 694 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) → 0 < inf(𝑇, ℝ, < )))
210203, 209sylbird 260 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → (∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡) → 0 < inf(𝑇, ℝ, < )))
211192, 210mtod 198 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
212 rexanali 3108 . . . . . 6 (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) ↔ ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
213211, 212sylibr 234 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → ∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡))
214 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑅𝑧) = (𝑅𝑥))
215 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑧 = 𝑥)
216214, 215oveq12d 7466 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑅𝑧) / 𝑧) = ((𝑅𝑥) / 𝑥))
217216fveq2d 6924 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅𝑥) / 𝑥)))
218217breq1d 5176 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
219218cbvralvw 3243 . . . . . . . . . . 11 (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡)
220 rpre 13065 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
221220ad2antll 728 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℝ)
222 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦𝑥)
223 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
224223rpred 13099 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ)
225 elicopnf 13505 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
226224, 225syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
227221, 222, 226mpbir2and 712 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ (𝑦[,)+∞))
228 pntlem3.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
229228pntrval 27624 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
230229ad2antll 728 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
231230oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
232 chpcl 27185 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
233221, 232syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℝ)
234233recnd 11318 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℂ)
235 rpcn 13067 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
236235ad2antll 728 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℂ)
237 rpne0 13073 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ≠ 0)
238237ad2antll 728 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ≠ 0)
239234, 236, 236, 238divsubdird 12109 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
240236, 238dividd 12068 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 / 𝑥) = 1)
241240oveq2d 7464 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
242231, 239, 2413eqtrrd 2785 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) = ((𝑅𝑥) / 𝑥))
243242fveq2d 6924 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) = (abs‘((𝑅𝑥) / 𝑥)))
244243breq1d 5176 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
245 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → ¬ 𝑠𝑡)
246245ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ¬ 𝑠𝑡)
24728ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (0[,]𝐴) ⊆ ℝ)
248247ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (0[,]𝐴) ⊆ ℝ)
249 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → 𝑡 ∈ (0[,]𝐴))
250249adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ (0[,]𝐴))
251248, 250sseldd 4009 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ ℝ)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
253252rpred 13099 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ)
254251, 253ltnled 11437 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑡 < 𝑠 ↔ ¬ 𝑠𝑡))
255246, 254mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 < 𝑠)
256220, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
257 rerpdivcl 13087 . . . . . . . . . . . . . . . . . . . . . . 23 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258256, 257mpancom 687 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
259258ad2antll 728 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
260 resubcl 11600 . . . . . . . . . . . . . . . . . . . . 21 ((((ψ‘𝑥) / 𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
261259, 43, 260sylancl 585 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
262261recnd 11318 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℂ)
263262abscld 15485 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ)
264 lelttr 11380 . . . . . . . . . . . . . . . . . 18 (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ ∧ 𝑡 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
265263, 251, 253, 264syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
266255, 265mpan2d 693 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
267244, 266sylbird 260 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
268227, 267embantd 59 . . . . . . . . . . . . . 14 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
269268exp32 420 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (𝑦𝑥 → (𝑥 ∈ ℝ+ → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
270269com24 95 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (𝑥 ∈ ℝ+ → (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
271270ralimdv2 3169 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
272219, 271biimtrid 242 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
273272reximdva 3174 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
274273anassrs 467 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ¬ 𝑠𝑡) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
275274impancom 451 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡) → (¬ 𝑠𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
276275expimpd 453 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) → ((∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
277276rexlimdva 3161 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
278213, 277mpd 15 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
279 ssrexv 4078 . . . 4 (ℝ+ ⊆ ℝ → (∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
2801, 278, 279mpsyl 68 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
281280ralrimiva 3152 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
282258recnd 11318 . . . . 5 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
283282rgen 3069 . . . 4 𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ
284283a1i 11 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ)
2851a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
286 1cnd 11285 . . 3 (𝜑 → 1 ∈ ℂ)
287284, 285, 286rlim2 15542 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
288281, 287mpbird 257 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  infcinf 9510  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  3c3 12349  0cn0 12553  cz 12639  +crp 13057  [,)cico 13409  [,]cicc 13410  cexp 14112  abscabs 15283  𝑟 crli 15531  TopOpenctopn 17481  fldccnfld 21387   Cn ccn 23253   ×t ctx 23589  cnccncf 24921  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-vma 27159  df-chp 27160
This theorem is referenced by:  pntleml  27673
  Copyright terms: Public domain W3C validator