MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlem3 Structured version   Visualization version   GIF version

Theorem pntlem3 27496
Description: Lemma for pnt 27501. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlem3.1 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
pntlem3.2 (𝜑𝐶 ∈ ℝ+)
pntlem3.3 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
Assertion
Ref Expression
pntlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐴   𝑢,𝑎,𝑥,𝑦,𝑧   𝑢,𝐶   𝑢,𝑡,𝑅,𝑥,𝑦,𝑧   𝑡,𝑎   𝑢,𝑇,𝑥   𝜑,𝑡,𝑥,𝑦,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑢,𝑎)   𝐶(𝑥,𝑦,𝑧,𝑡,𝑎)   𝑅(𝑎)   𝑇(𝑦,𝑧,𝑡,𝑎)

Proof of Theorem pntlem3
Dummy variables 𝑠 𝑤 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 12935 . . . 4 + ⊆ ℝ
2 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32subcn 24731 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
43a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
5 ssid 3966 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
6 cncfmptid 24782 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
75, 5, 6mp2an 692 . . . . . . . . . . . 12 (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ)
87a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
9 pntlem3.2 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ+)
109adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℝ+)
1110rpcnd 12973 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℂ)
125a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ℂ ⊆ ℂ)
13 cncfmptc 24781 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
1411, 12, 12, 13syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
15 3nn0 12436 . . . . . . . . . . . . . 14 3 ∈ ℕ0
162expcn 24739 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1715, 16mp1i 13 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
182cncfcn1 24780 . . . . . . . . . . . . 13 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
1917, 18eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ (ℂ–cn→ℂ))
2014, 19mulcncf 25322 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝐶 · (𝑝↑3))) ∈ (ℂ–cn→ℂ))
212, 4, 8, 20cncfmpt2f 24784 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ))
22 pntlem3.1 . . . . . . . . . . . . . . 15 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
2322ssrab3 4041 . . . . . . . . . . . . . 14 𝑇 ⊆ (0[,]𝐴)
24 0re 11152 . . . . . . . . . . . . . . 15 0 ∈ ℝ
25 pntlem3.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
2625rpred 12971 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
27 iccssre 13366 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0[,]𝐴) ⊆ ℝ)
2824, 26, 27sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (0[,]𝐴) ⊆ ℝ)
2923, 28sstrid 3955 . . . . . . . . . . . . 13 (𝜑𝑇 ⊆ ℝ)
30 0xr 11197 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
3125rpxrd 12972 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
3225rpge0d 12975 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝐴)
33 ubicc2 13402 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
3430, 31, 32, 33mp3an2i 1468 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (0[,]𝐴))
35 1rp 12931 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
36 fveq2 6840 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝑅𝑥) = (𝑅𝑧))
37 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧𝑥 = 𝑧)
3836, 37oveq12d 7387 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑧) / 𝑧))
3938fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑧) / 𝑧)))
4039breq1d 5112 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
41 pntlem3.A . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4241adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
43 1re 11150 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
44 elicopnf 13382 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℝ → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4543, 44mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4645simprbda 498 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ)
47 0red 11153 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 ∈ ℝ)
4843a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ∈ ℝ)
49 0lt1 11676 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
5049a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 1)
5145simplbda 499 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ≤ 𝑧)
5247, 48, 46, 50, 51ltletrd 11310 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 𝑧)
5346, 52elrpd 12968 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ+)
5440, 42, 53rspcdva 3586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (1[,)+∞)) → (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5554ralrimiva 3125 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
56 oveq1 7376 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑦[,)+∞) = (1[,)+∞))
5756raleqdv 3296 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴 ↔ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
5857rspcev 3585 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5935, 55, 58sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
60 breq2 5106 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝐴 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6160rexralbidv 3201 . . . . . . . . . . . . . . . 16 (𝑡 = 𝐴 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6261, 22elrab2 3659 . . . . . . . . . . . . . . 15 (𝐴𝑇 ↔ (𝐴 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6334, 59, 62sylanbrc 583 . . . . . . . . . . . . . 14 (𝜑𝐴𝑇)
6463ne0d 4301 . . . . . . . . . . . . 13 (𝜑𝑇 ≠ ∅)
65 elicc2 13348 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6624, 26, 65sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6766biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]𝐴)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴))
6867simp2d 1143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]𝐴)) → 0 ≤ 𝑡)
6968a1d 25 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7069ralrimiva 3125 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7122raleqi 3294 . . . . . . . . . . . . . . . 16 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤)
72 breq2 5106 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑡 → (0 ≤ 𝑤 ↔ 0 ≤ 𝑡))
7372ralrab2 3666 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7471, 73bitri 275 . . . . . . . . . . . . . . 15 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7570, 74sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑤𝑇 0 ≤ 𝑤)
76 breq1 5105 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
7776ralbidv 3156 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (∀𝑤𝑇 𝑥𝑤 ↔ ∀𝑤𝑇 0 ≤ 𝑤))
7877rspcev 3585 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ∀𝑤𝑇 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
7924, 75, 78sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
80 infrecl 12141 . . . . . . . . . . . . 13 ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) → inf(𝑇, ℝ, < ) ∈ ℝ)
8129, 64, 79, 80syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℝ)
8281recnd 11178 . . . . . . . . . . 11 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℂ)
8382adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℂ)
84 elrp 12929 . . . . . . . . . . . . . 14 (inf(𝑇, ℝ, < ) ∈ ℝ+ ↔ (inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )))
8584biimpri 228 . . . . . . . . . . . . 13 ((inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
8681, 85sylan 580 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
87 3z 12542 . . . . . . . . . . . 12 3 ∈ ℤ
88 rpexpcl 14021 . . . . . . . . . . . 12 ((inf(𝑇, ℝ, < ) ∈ ℝ+ ∧ 3 ∈ ℤ) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
8986, 87, 88sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
9010, 89rpmulcld 12987 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+)
91 cncfi 24763 . . . . . . . . . 10 (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ) ∧ inf(𝑇, ℝ, < ) ∈ ℂ ∧ (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9221, 83, 90, 91syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9381ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
94 rphalfcl 12956 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ+ → (𝑠 / 2) ∈ ℝ+)
9594adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ+)
9693, 95ltaddrpd 13004 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))
9795rpred 12971 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ)
9893, 97readdcld 11179 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
9993, 98ltnled 11297 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
10096, 99mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ))
101 ax-resscn 11101 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
10229, 101sstrdi 3956 . . . . . . . . . . . . . 14 (𝜑𝑇 ⊆ ℂ)
103102ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℂ)
104 ssralv 4012 . . . . . . . . . . . . 13 (𝑇 ⊆ ℂ → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
105103, 104syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
10629ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
107106sselda 3943 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℝ)
10898adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
109107, 108ltnled 11297 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
11081ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ)
11197adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) ∈ ℝ)
112110, 111resubcld 11582 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) ∈ ℝ)
11393, 95ltsubrpd 13003 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
114113adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
11529ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑇 ⊆ ℝ)
11679ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
117 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢𝑇)
118 infrelb 12144 . . . . . . . . . . . . . . . . . . . . 21 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
119115, 116, 117, 118syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
120112, 110, 107, 114, 119ltletrd 11310 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢)
121107, 110, 111absdifltd 15378 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ↔ ((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))))
122121biimprd 248 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2))) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
123120, 122mpand 695 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
124 rphalflt 12958 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ+ → (𝑠 / 2) < 𝑠)
125124ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) < 𝑠)
126107, 110resubcld 11582 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℝ)
127126recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℂ)
128127abscld 15381 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ)
129 rpre 12936 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
130129ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑠 ∈ ℝ)
131 lttr 11226 . . . . . . . . . . . . . . . . . . . 20 (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ ∧ (𝑠 / 2) ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
132128, 111, 130, 131syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
133125, 132mpan2d 694 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
134123, 133syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
135109, 134sylbird 260 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢 → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
136135con1d 145 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
137107recnd 11178 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℂ)
138 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢𝑝 = 𝑢)
139 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑢 → (𝑝↑3) = (𝑢↑3))
140139oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢 → (𝐶 · (𝑝↑3)) = (𝐶 · (𝑢↑3)))
141138, 140oveq12d 7387 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑢 → (𝑝 − (𝐶 · (𝑝↑3))) = (𝑢 − (𝐶 · (𝑢↑3))))
142 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) = (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))
143 ovex 7402 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 − (𝐶 · (𝑢↑3))) ∈ V
144141, 142, 143fvmpt 6950 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
145137, 144syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
14683ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℂ)
147 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → 𝑝 = inf(𝑇, ℝ, < ))
148 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝↑3) = (inf(𝑇, ℝ, < )↑3))
149148oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → (𝐶 · (𝑝↑3)) = (𝐶 · (inf(𝑇, ℝ, < )↑3)))
150147, 149oveq12d 7387 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝 − (𝐶 · (𝑝↑3))) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
151 ovex 7402 . . . . . . . . . . . . . . . . . . . . 21 (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ V
152150, 142, 151fvmpt 6950 . . . . . . . . . . . . . . . . . . . 20 (inf(𝑇, ℝ, < ) ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
153146, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
154145, 153oveq12d 7387 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < ))) = ((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
155154fveq2d 6844 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) = (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
156155breq1d 5112 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
1579rpred 12971 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
158157ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝐶 ∈ ℝ)
159 reexpcl 14019 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝑢↑3) ∈ ℝ)
160107, 15, 159sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢↑3) ∈ ℝ)
161158, 160remulcld 11180 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (𝑢↑3)) ∈ ℝ)
162107, 161resubcld 11582 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ ℝ)
16315a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 3 ∈ ℕ0)
164110, 163reexpcld 14104 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ)
165158, 164remulcld 11180 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ)
166110, 165resubcld 11582 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ ℝ)
167162, 166, 165absdifltd 15378 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
168165recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℂ)
169146, 168npcand 11513 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) = inf(𝑇, ℝ, < ))
170169breq2d 5114 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) ↔ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < )))
171 pntlem3.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
172171ad4ant14 752 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
173 infrelb 12144 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤 ∧ (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
174115, 116, 172, 173syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
175110, 162, 174lensymd 11301 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ¬ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ))
176175pm2.21d 121 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
177170, 176sylbid 240 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
178177adantld 490 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3)))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
179167, 178sylbid 240 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
180156, 179sylbid 240 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
181136, 180jad 187 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
182181ralimdva 3145 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
18364ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
18479ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
185 infregelb 12143 . . . . . . . . . . . . . 14 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
186106, 183, 184, 98, 185syl31anc 1375 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
187182, 186sylibrd 259 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
188105, 187syld 47 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
189100, 188mtod 198 . . . . . . . . . 10 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ ∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
190189nrexdv 3128 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ¬ ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
19192, 190pm2.65da 816 . . . . . . . 8 (𝜑 → ¬ 0 < inf(𝑇, ℝ, < ))
192191adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ¬ 0 < inf(𝑇, ℝ, < ))
19329adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
19464adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
19579adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
196129adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ)
197 infregelb 12143 . . . . . . . . . 10 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ 𝑠 ∈ ℝ) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
198193, 194, 195, 196, 197syl31anc 1375 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
19922raleqi 3294 . . . . . . . . . 10 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤)
200 breq2 5106 . . . . . . . . . . 11 (𝑤 = 𝑡 → (𝑠𝑤𝑠𝑡))
201200ralrab2 3666 . . . . . . . . . 10 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
202199, 201bitri 275 . . . . . . . . 9 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
203198, 202bitrdi 287 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡)))
204 rpgt0 12940 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 < 𝑠)
205204adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 0 < 𝑠)
20681adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
207 ltletr 11242 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ inf(𝑇, ℝ, < ) ∈ ℝ) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
20824, 196, 206, 207mp3an2i 1468 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
209205, 208mpand 695 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) → 0 < inf(𝑇, ℝ, < )))
210203, 209sylbird 260 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → (∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡) → 0 < inf(𝑇, ℝ, < )))
211192, 210mtod 198 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
212 rexanali 3084 . . . . . 6 (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) ↔ ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
213211, 212sylibr 234 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → ∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡))
214 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑅𝑧) = (𝑅𝑥))
215 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑧 = 𝑥)
216214, 215oveq12d 7387 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑅𝑧) / 𝑧) = ((𝑅𝑥) / 𝑥))
217216fveq2d 6844 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅𝑥) / 𝑥)))
218217breq1d 5112 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
219218cbvralvw 3213 . . . . . . . . . . 11 (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡)
220 rpre 12936 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
221220ad2antll 729 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℝ)
222 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦𝑥)
223 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
224223rpred 12971 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ)
225 elicopnf 13382 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
226224, 225syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
227221, 222, 226mpbir2and 713 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ (𝑦[,)+∞))
228 pntlem3.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
229228pntrval 27449 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
230229ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
231230oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
232 chpcl 27010 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
233221, 232syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℝ)
234233recnd 11178 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℂ)
235 rpcn 12938 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
236235ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℂ)
237 rpne0 12944 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ≠ 0)
238237ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ≠ 0)
239234, 236, 236, 238divsubdird 11973 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
240236, 238dividd 11932 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 / 𝑥) = 1)
241240oveq2d 7385 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
242231, 239, 2413eqtrrd 2769 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) = ((𝑅𝑥) / 𝑥))
243242fveq2d 6844 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) = (abs‘((𝑅𝑥) / 𝑥)))
244243breq1d 5112 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
245 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → ¬ 𝑠𝑡)
246245ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ¬ 𝑠𝑡)
24728ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (0[,]𝐴) ⊆ ℝ)
248247ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (0[,]𝐴) ⊆ ℝ)
249 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → 𝑡 ∈ (0[,]𝐴))
250249adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ (0[,]𝐴))
251248, 250sseldd 3944 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ ℝ)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
253252rpred 12971 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ)
254251, 253ltnled 11297 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑡 < 𝑠 ↔ ¬ 𝑠𝑡))
255246, 254mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 < 𝑠)
256220, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
257 rerpdivcl 12959 . . . . . . . . . . . . . . . . . . . . . . 23 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258256, 257mpancom 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
259258ad2antll 729 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
260 resubcl 11462 . . . . . . . . . . . . . . . . . . . . 21 ((((ψ‘𝑥) / 𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
261259, 43, 260sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
262261recnd 11178 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℂ)
263262abscld 15381 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ)
264 lelttr 11240 . . . . . . . . . . . . . . . . . 18 (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ ∧ 𝑡 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
265263, 251, 253, 264syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
266255, 265mpan2d 694 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
267244, 266sylbird 260 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
268227, 267embantd 59 . . . . . . . . . . . . . 14 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
269268exp32 420 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (𝑦𝑥 → (𝑥 ∈ ℝ+ → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
270269com24 95 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (𝑥 ∈ ℝ+ → (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
271270ralimdv2 3142 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
272219, 271biimtrid 242 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
273272reximdva 3146 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
274273anassrs 467 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ¬ 𝑠𝑡) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
275274impancom 451 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡) → (¬ 𝑠𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
276275expimpd 453 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) → ((∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
277276rexlimdva 3134 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
278213, 277mpd 15 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
279 ssrexv 4013 . . . 4 (ℝ+ ⊆ ℝ → (∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
2801, 278, 279mpsyl 68 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
281280ralrimiva 3125 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
282258recnd 11178 . . . . 5 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
283282rgen 3046 . . . 4 𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ
284283a1i 11 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ)
2851a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
286 1cnd 11145 . . 3 (𝜑 → 1 ∈ ℂ)
287284, 285, 286rlim2 15438 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
288281, 287mpbird 257 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  infcinf 9368  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  2c2 12217  3c3 12218  0cn0 12418  cz 12505  +crp 12927  [,)cico 13284  [,]cicc 13285  cexp 14002  abscabs 15176  𝑟 crli 15427  TopOpenctopn 17360  fldccnfld 21240   Cn ccn 23087   ×t ctx 23423  cnccncf 24745  ψcchp 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-vma 26984  df-chp 26985
This theorem is referenced by:  pntleml  27498
  Copyright terms: Public domain W3C validator