MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlem3 Structured version   Visualization version   GIF version

Theorem pntlem3 26185
Description: Lemma for pnt 26190. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlem3.1 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
pntlem3.2 (𝜑𝐶 ∈ ℝ+)
pntlem3.3 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
Assertion
Ref Expression
pntlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐴   𝑢,𝑎,𝑥,𝑦,𝑧   𝑢,𝐶   𝑢,𝑡,𝑅,𝑥,𝑦,𝑧   𝑡,𝑎   𝑢,𝑇,𝑥   𝜑,𝑡,𝑥,𝑦,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑢,𝑎)   𝐶(𝑥,𝑦,𝑧,𝑡,𝑎)   𝑅(𝑎)   𝑇(𝑦,𝑧,𝑡,𝑎)

Proof of Theorem pntlem3
Dummy variables 𝑠 𝑤 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 12397 . . . 4 + ⊆ ℝ
2 eqid 2821 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32subcn 23474 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
43a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
5 ssid 3989 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
6 cncfmptid 23520 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
75, 5, 6mp2an 690 . . . . . . . . . . . 12 (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ)
87a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
9 pntlem3.2 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ+)
109adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℝ+)
1110rpcnd 12434 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℂ)
125a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ℂ ⊆ ℂ)
13 cncfmptc 23519 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
1411, 12, 12, 13syl3anc 1367 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
15 3nn0 11916 . . . . . . . . . . . . . 14 3 ∈ ℕ0
162expcn 23480 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1715, 16mp1i 13 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
182cncfcn1 23518 . . . . . . . . . . . . 13 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
1917, 18eleqtrrdi 2924 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ (ℂ–cn→ℂ))
2014, 19mulcncf 24047 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝐶 · (𝑝↑3))) ∈ (ℂ–cn→ℂ))
212, 4, 8, 20cncfmpt2f 23522 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ))
22 pntlem3.1 . . . . . . . . . . . . . . 15 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
2322ssrab3 4057 . . . . . . . . . . . . . 14 𝑇 ⊆ (0[,]𝐴)
24 0re 10643 . . . . . . . . . . . . . . 15 0 ∈ ℝ
25 pntlem3.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
2625rpred 12432 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
27 iccssre 12819 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0[,]𝐴) ⊆ ℝ)
2824, 26, 27sylancr 589 . . . . . . . . . . . . . 14 (𝜑 → (0[,]𝐴) ⊆ ℝ)
2923, 28sstrid 3978 . . . . . . . . . . . . 13 (𝜑𝑇 ⊆ ℝ)
30 0xr 10688 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
3125rpxrd 12433 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
3225rpge0d 12436 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝐴)
33 ubicc2 12854 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
3430, 31, 32, 33mp3an2i 1462 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (0[,]𝐴))
35 1rp 12394 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
36 fveq2 6670 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝑅𝑥) = (𝑅𝑧))
37 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧𝑥 = 𝑧)
3836, 37oveq12d 7174 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑧) / 𝑧))
3938fveq2d 6674 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑧) / 𝑧)))
4039breq1d 5076 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
41 pntlem3.A . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4241adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
43 1re 10641 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
44 elicopnf 12834 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℝ → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4543, 44mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4645simprbda 501 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ)
47 0red 10644 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 ∈ ℝ)
4843a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ∈ ℝ)
49 0lt1 11162 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
5049a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 1)
5145simplbda 502 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ≤ 𝑧)
5247, 48, 46, 50, 51ltletrd 10800 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 𝑧)
5346, 52elrpd 12429 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ+)
5440, 42, 53rspcdva 3625 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (1[,)+∞)) → (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5554ralrimiva 3182 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
56 oveq1 7163 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑦[,)+∞) = (1[,)+∞))
5756raleqdv 3415 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴 ↔ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
5857rspcev 3623 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5935, 55, 58sylancr 589 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
60 breq2 5070 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝐴 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6160rexralbidv 3301 . . . . . . . . . . . . . . . 16 (𝑡 = 𝐴 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6261, 22elrab2 3683 . . . . . . . . . . . . . . 15 (𝐴𝑇 ↔ (𝐴 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6334, 59, 62sylanbrc 585 . . . . . . . . . . . . . 14 (𝜑𝐴𝑇)
6463ne0d 4301 . . . . . . . . . . . . 13 (𝜑𝑇 ≠ ∅)
65 elicc2 12802 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6624, 26, 65sylancr 589 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6766biimpa 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]𝐴)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴))
6867simp2d 1139 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]𝐴)) → 0 ≤ 𝑡)
6968a1d 25 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7069ralrimiva 3182 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7122raleqi 3413 . . . . . . . . . . . . . . . 16 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤)
72 breq2 5070 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑡 → (0 ≤ 𝑤 ↔ 0 ≤ 𝑡))
7372ralrab2 3690 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7471, 73bitri 277 . . . . . . . . . . . . . . 15 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7570, 74sylibr 236 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑤𝑇 0 ≤ 𝑤)
76 breq1 5069 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
7776ralbidv 3197 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (∀𝑤𝑇 𝑥𝑤 ↔ ∀𝑤𝑇 0 ≤ 𝑤))
7877rspcev 3623 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ∀𝑤𝑇 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
7924, 75, 78sylancr 589 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
80 infrecl 11623 . . . . . . . . . . . . 13 ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) → inf(𝑇, ℝ, < ) ∈ ℝ)
8129, 64, 79, 80syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℝ)
8281recnd 10669 . . . . . . . . . . 11 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℂ)
8382adantr 483 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℂ)
84 elrp 12392 . . . . . . . . . . . . . 14 (inf(𝑇, ℝ, < ) ∈ ℝ+ ↔ (inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )))
8584biimpri 230 . . . . . . . . . . . . 13 ((inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
8681, 85sylan 582 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
87 3z 12016 . . . . . . . . . . . 12 3 ∈ ℤ
88 rpexpcl 13449 . . . . . . . . . . . 12 ((inf(𝑇, ℝ, < ) ∈ ℝ+ ∧ 3 ∈ ℤ) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
8986, 87, 88sylancl 588 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
9010, 89rpmulcld 12448 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+)
91 cncfi 23502 . . . . . . . . . 10 (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ) ∧ inf(𝑇, ℝ, < ) ∈ ℂ ∧ (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9221, 83, 90, 91syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9381ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
94 rphalfcl 12417 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ+ → (𝑠 / 2) ∈ ℝ+)
9594adantl 484 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ+)
9693, 95ltaddrpd 12465 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))
9795rpred 12432 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ)
9893, 97readdcld 10670 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
9993, 98ltnled 10787 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
10096, 99mpbid 234 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ))
101 ax-resscn 10594 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
10229, 101sstrdi 3979 . . . . . . . . . . . . . 14 (𝜑𝑇 ⊆ ℂ)
103102ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℂ)
104 ssralv 4033 . . . . . . . . . . . . 13 (𝑇 ⊆ ℂ → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
105103, 104syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
10629ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
107106sselda 3967 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℝ)
10898adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
109107, 108ltnled 10787 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
11081ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ)
11197adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) ∈ ℝ)
112110, 111resubcld 11068 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) ∈ ℝ)
11393, 95ltsubrpd 12464 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
114113adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
11529ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑇 ⊆ ℝ)
11679ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
117 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢𝑇)
118 infrelb 11626 . . . . . . . . . . . . . . . . . . . . 21 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
119115, 116, 117, 118syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
120112, 110, 107, 114, 119ltletrd 10800 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢)
121107, 110, 111absdifltd 14793 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ↔ ((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))))
122121biimprd 250 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2))) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
123120, 122mpand 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
124 rphalflt 12419 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ+ → (𝑠 / 2) < 𝑠)
125124ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) < 𝑠)
126107, 110resubcld 11068 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℝ)
127126recnd 10669 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℂ)
128127abscld 14796 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ)
129 rpre 12398 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
130129ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑠 ∈ ℝ)
131 lttr 10717 . . . . . . . . . . . . . . . . . . . 20 (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ ∧ (𝑠 / 2) ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
132128, 111, 130, 131syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
133125, 132mpan2d 692 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
134123, 133syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
135109, 134sylbird 262 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢 → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
136135con1d 147 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
137107recnd 10669 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℂ)
138 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢𝑝 = 𝑢)
139 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑢 → (𝑝↑3) = (𝑢↑3))
140139oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢 → (𝐶 · (𝑝↑3)) = (𝐶 · (𝑢↑3)))
141138, 140oveq12d 7174 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑢 → (𝑝 − (𝐶 · (𝑝↑3))) = (𝑢 − (𝐶 · (𝑢↑3))))
142 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) = (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))
143 ovex 7189 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 − (𝐶 · (𝑢↑3))) ∈ V
144141, 142, 143fvmpt 6768 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
145137, 144syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
14683ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℂ)
147 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → 𝑝 = inf(𝑇, ℝ, < ))
148 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝↑3) = (inf(𝑇, ℝ, < )↑3))
149148oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → (𝐶 · (𝑝↑3)) = (𝐶 · (inf(𝑇, ℝ, < )↑3)))
150147, 149oveq12d 7174 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝 − (𝐶 · (𝑝↑3))) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
151 ovex 7189 . . . . . . . . . . . . . . . . . . . . 21 (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ V
152150, 142, 151fvmpt 6768 . . . . . . . . . . . . . . . . . . . 20 (inf(𝑇, ℝ, < ) ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
153146, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
154145, 153oveq12d 7174 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < ))) = ((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
155154fveq2d 6674 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) = (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
156155breq1d 5076 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
1579rpred 12432 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
158157ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝐶 ∈ ℝ)
159 reexpcl 13447 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝑢↑3) ∈ ℝ)
160107, 15, 159sylancl 588 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢↑3) ∈ ℝ)
161158, 160remulcld 10671 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (𝑢↑3)) ∈ ℝ)
162107, 161resubcld 11068 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ ℝ)
16315a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 3 ∈ ℕ0)
164110, 163reexpcld 13528 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ)
165158, 164remulcld 10671 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ)
166110, 165resubcld 11068 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ ℝ)
167162, 166, 165absdifltd 14793 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
168165recnd 10669 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℂ)
169146, 168npcand 11001 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) = inf(𝑇, ℝ, < ))
170169breq2d 5078 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) ↔ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < )))
171 pntlem3.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
172171ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
173 infrelb 11626 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤 ∧ (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
174115, 116, 172, 173syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
175110, 162, 174lensymd 10791 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ¬ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ))
176175pm2.21d 121 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
177170, 176sylbid 242 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
178177adantld 493 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3)))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
179167, 178sylbid 242 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
180156, 179sylbid 242 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
181136, 180jad 189 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
182181ralimdva 3177 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
18364ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
18479ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
185 infregelb 11625 . . . . . . . . . . . . . 14 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
186106, 183, 184, 98, 185syl31anc 1369 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
187182, 186sylibrd 261 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
188105, 187syld 47 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
189100, 188mtod 200 . . . . . . . . . 10 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ ∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
190189nrexdv 3270 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ¬ ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
19192, 190pm2.65da 815 . . . . . . . 8 (𝜑 → ¬ 0 < inf(𝑇, ℝ, < ))
192191adantr 483 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ¬ 0 < inf(𝑇, ℝ, < ))
19329adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
19464adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
19579adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
196129adantl 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ)
197 infregelb 11625 . . . . . . . . . 10 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ 𝑠 ∈ ℝ) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
198193, 194, 195, 196, 197syl31anc 1369 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
19922raleqi 3413 . . . . . . . . . 10 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤)
200 breq2 5070 . . . . . . . . . . 11 (𝑤 = 𝑡 → (𝑠𝑤𝑠𝑡))
201200ralrab2 3690 . . . . . . . . . 10 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
202199, 201bitri 277 . . . . . . . . 9 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
203198, 202syl6bb 289 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡)))
204 rpgt0 12402 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 < 𝑠)
205204adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 0 < 𝑠)
20681adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
207 ltletr 10732 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ inf(𝑇, ℝ, < ) ∈ ℝ) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
20824, 196, 206, 207mp3an2i 1462 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
209205, 208mpand 693 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) → 0 < inf(𝑇, ℝ, < )))
210203, 209sylbird 262 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → (∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡) → 0 < inf(𝑇, ℝ, < )))
211192, 210mtod 200 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
212 rexanali 3265 . . . . . 6 (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) ↔ ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
213211, 212sylibr 236 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → ∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡))
214 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑅𝑧) = (𝑅𝑥))
215 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑧 = 𝑥)
216214, 215oveq12d 7174 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑅𝑧) / 𝑧) = ((𝑅𝑥) / 𝑥))
217216fveq2d 6674 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅𝑥) / 𝑥)))
218217breq1d 5076 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
219218cbvralvw 3449 . . . . . . . . . . 11 (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡)
220 rpre 12398 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
221220ad2antll 727 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℝ)
222 simprl 769 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦𝑥)
223 simplr 767 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
224223rpred 12432 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ)
225 elicopnf 12834 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
226224, 225syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
227221, 222, 226mpbir2and 711 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ (𝑦[,)+∞))
228 pntlem3.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
229228pntrval 26138 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
230229ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
231230oveq1d 7171 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
232 chpcl 25701 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
233221, 232syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℝ)
234233recnd 10669 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℂ)
235 rpcn 12400 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
236235ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℂ)
237 rpne0 12406 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ≠ 0)
238237ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ≠ 0)
239234, 236, 236, 238divsubdird 11455 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
240236, 238dividd 11414 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 / 𝑥) = 1)
241240oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
242231, 239, 2413eqtrrd 2861 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) = ((𝑅𝑥) / 𝑥))
243242fveq2d 6674 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) = (abs‘((𝑅𝑥) / 𝑥)))
244243breq1d 5076 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
245 simprr 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → ¬ 𝑠𝑡)
246245ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ¬ 𝑠𝑡)
24728ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (0[,]𝐴) ⊆ ℝ)
248247ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (0[,]𝐴) ⊆ ℝ)
249 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → 𝑡 ∈ (0[,]𝐴))
250249adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ (0[,]𝐴))
251248, 250sseldd 3968 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ ℝ)
252 simp-4r 782 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
253252rpred 12432 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ)
254251, 253ltnled 10787 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑡 < 𝑠 ↔ ¬ 𝑠𝑡))
255246, 254mpbird 259 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 < 𝑠)
256220, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
257 rerpdivcl 12420 . . . . . . . . . . . . . . . . . . . . . . 23 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258256, 257mpancom 686 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
259258ad2antll 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
260 resubcl 10950 . . . . . . . . . . . . . . . . . . . . 21 ((((ψ‘𝑥) / 𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
261259, 43, 260sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
262261recnd 10669 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℂ)
263262abscld 14796 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ)
264 lelttr 10731 . . . . . . . . . . . . . . . . . 18 (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ ∧ 𝑡 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
265263, 251, 253, 264syl3anc 1367 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
266255, 265mpan2d 692 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
267244, 266sylbird 262 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
268227, 267embantd 59 . . . . . . . . . . . . . 14 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
269268exp32 423 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (𝑦𝑥 → (𝑥 ∈ ℝ+ → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
270269com24 95 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (𝑥 ∈ ℝ+ → (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
271270ralimdv2 3176 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
272219, 271syl5bi 244 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
273272reximdva 3274 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
274273anassrs 470 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ¬ 𝑠𝑡) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
275274impancom 454 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡) → (¬ 𝑠𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
276275expimpd 456 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) → ((∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
277276rexlimdva 3284 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
278213, 277mpd 15 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
279 ssrexv 4034 . . . 4 (ℝ+ ⊆ ℝ → (∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
2801, 278, 279mpsyl 68 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
281280ralrimiva 3182 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
282258recnd 10669 . . . . 5 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
283282rgen 3148 . . . 4 𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ
284283a1i 11 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ)
2851a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
286 1cnd 10636 . . 3 (𝜑 → 1 ∈ ℂ)
287284, 285, 286rlim2 14853 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
288281, 287mpbird 259 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  wss 3936  c0 4291   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  infcinf 8905  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  2c2 11693  3c3 11694  0cn0 11898  cz 11982  +crp 12390  [,)cico 12741  [,]cicc 12742  cexp 13430  abscabs 14593  𝑟 crli 14842  TopOpenctopn 16695  fldccnfld 20545   Cn ccn 21832   ×t ctx 22168  cnccncf 23484  ψcchp 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-vma 25675  df-chp 25676
This theorem is referenced by:  pntleml  26187
  Copyright terms: Public domain W3C validator