MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlem3 Structured version   Visualization version   GIF version

Theorem pntlem3 26172
Description: Lemma for pnt 26177. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlem3.1 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
pntlem3.2 (𝜑𝐶 ∈ ℝ+)
pntlem3.3 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
Assertion
Ref Expression
pntlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐴   𝑢,𝑎,𝑥,𝑦,𝑧   𝑢,𝐶   𝑢,𝑡,𝑅,𝑥,𝑦,𝑧   𝑡,𝑎   𝑢,𝑇,𝑥   𝜑,𝑡,𝑥,𝑦,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑢,𝑎)   𝐶(𝑥,𝑦,𝑧,𝑡,𝑎)   𝑅(𝑎)   𝑇(𝑦,𝑧,𝑡,𝑎)

Proof of Theorem pntlem3
Dummy variables 𝑠 𝑤 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 12375 . . . 4 + ⊆ ℝ
2 eqid 2820 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32subcn 23450 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
43a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
5 ssid 3968 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
6 cncfmptid 23497 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
75, 5, 6mp2an 690 . . . . . . . . . . . 12 (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ)
87a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
9 pntlem3.2 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ+)
109adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℝ+)
1110rpcnd 12412 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℂ)
125a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ℂ ⊆ ℂ)
13 cncfmptc 23496 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
1411, 12, 12, 13syl3anc 1367 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
15 3nn0 11894 . . . . . . . . . . . . . 14 3 ∈ ℕ0
162expcn 23456 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1715, 16mp1i 13 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
182cncfcn1 23495 . . . . . . . . . . . . 13 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
1917, 18eleqtrrdi 2922 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ (ℂ–cn→ℂ))
2014, 19mulcncf 24029 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝐶 · (𝑝↑3))) ∈ (ℂ–cn→ℂ))
212, 4, 8, 20cncfmpt2f 23499 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ))
22 pntlem3.1 . . . . . . . . . . . . . . 15 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
2322ssrab3 4036 . . . . . . . . . . . . . 14 𝑇 ⊆ (0[,]𝐴)
24 0re 10621 . . . . . . . . . . . . . . 15 0 ∈ ℝ
25 pntlem3.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
2625rpred 12410 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
27 iccssre 12798 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0[,]𝐴) ⊆ ℝ)
2824, 26, 27sylancr 589 . . . . . . . . . . . . . 14 (𝜑 → (0[,]𝐴) ⊆ ℝ)
2923, 28sstrid 3957 . . . . . . . . . . . . 13 (𝜑𝑇 ⊆ ℝ)
30 0xr 10666 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
3125rpxrd 12411 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
3225rpge0d 12414 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝐴)
33 ubicc2 12834 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
3430, 31, 32, 33mp3an2i 1462 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (0[,]𝐴))
35 1rp 12372 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
36 fveq2 6646 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝑅𝑥) = (𝑅𝑧))
37 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧𝑥 = 𝑧)
3836, 37oveq12d 7151 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑧) / 𝑧))
3938fveq2d 6650 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑧) / 𝑧)))
4039breq1d 5052 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
41 pntlem3.A . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4241adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
43 1re 10619 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
44 elicopnf 12814 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℝ → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4543, 44mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4645simprbda 501 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ)
47 0red 10622 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 ∈ ℝ)
4843a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ∈ ℝ)
49 0lt1 11140 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
5049a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 1)
5145simplbda 502 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ≤ 𝑧)
5247, 48, 46, 50, 51ltletrd 10778 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 𝑧)
5346, 52elrpd 12407 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ+)
5440, 42, 53rspcdva 3604 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (1[,)+∞)) → (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5554ralrimiva 3169 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
56 oveq1 7140 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑦[,)+∞) = (1[,)+∞))
5756raleqdv 3398 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴 ↔ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
5857rspcev 3602 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5935, 55, 58sylancr 589 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
60 breq2 5046 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝐴 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6160rexralbidv 3288 . . . . . . . . . . . . . . . 16 (𝑡 = 𝐴 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6261, 22elrab2 3663 . . . . . . . . . . . . . . 15 (𝐴𝑇 ↔ (𝐴 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6334, 59, 62sylanbrc 585 . . . . . . . . . . . . . 14 (𝜑𝐴𝑇)
6463ne0d 4277 . . . . . . . . . . . . 13 (𝜑𝑇 ≠ ∅)
65 elicc2 12781 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6624, 26, 65sylancr 589 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6766biimpa 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]𝐴)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴))
6867simp2d 1139 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]𝐴)) → 0 ≤ 𝑡)
6968a1d 25 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7069ralrimiva 3169 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7122raleqi 3396 . . . . . . . . . . . . . . . 16 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤)
72 breq2 5046 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑡 → (0 ≤ 𝑤 ↔ 0 ≤ 𝑡))
7372ralrab2 3670 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7471, 73bitri 277 . . . . . . . . . . . . . . 15 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7570, 74sylibr 236 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑤𝑇 0 ≤ 𝑤)
76 breq1 5045 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
7776ralbidv 3184 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (∀𝑤𝑇 𝑥𝑤 ↔ ∀𝑤𝑇 0 ≤ 𝑤))
7877rspcev 3602 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ∀𝑤𝑇 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
7924, 75, 78sylancr 589 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
80 infrecl 11601 . . . . . . . . . . . . 13 ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) → inf(𝑇, ℝ, < ) ∈ ℝ)
8129, 64, 79, 80syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℝ)
8281recnd 10647 . . . . . . . . . . 11 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℂ)
8382adantr 483 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℂ)
84 elrp 12370 . . . . . . . . . . . . . 14 (inf(𝑇, ℝ, < ) ∈ ℝ+ ↔ (inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )))
8584biimpri 230 . . . . . . . . . . . . 13 ((inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
8681, 85sylan 582 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
87 3z 11994 . . . . . . . . . . . 12 3 ∈ ℤ
88 rpexpcl 13433 . . . . . . . . . . . 12 ((inf(𝑇, ℝ, < ) ∈ ℝ+ ∧ 3 ∈ ℤ) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
8986, 87, 88sylancl 588 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
9010, 89rpmulcld 12426 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+)
91 cncfi 23478 . . . . . . . . . 10 (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ) ∧ inf(𝑇, ℝ, < ) ∈ ℂ ∧ (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9221, 83, 90, 91syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9381ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
94 rphalfcl 12395 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ+ → (𝑠 / 2) ∈ ℝ+)
9594adantl 484 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ+)
9693, 95ltaddrpd 12443 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))
9795rpred 12410 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ)
9893, 97readdcld 10648 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
9993, 98ltnled 10765 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
10096, 99mpbid 234 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ))
101 ax-resscn 10572 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
10229, 101sstrdi 3958 . . . . . . . . . . . . . 14 (𝜑𝑇 ⊆ ℂ)
103102ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℂ)
104 ssralv 4012 . . . . . . . . . . . . 13 (𝑇 ⊆ ℂ → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
105103, 104syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
10629ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
107106sselda 3946 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℝ)
10898adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
109107, 108ltnled 10765 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
11081ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ)
11197adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) ∈ ℝ)
112110, 111resubcld 11046 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) ∈ ℝ)
11393, 95ltsubrpd 12442 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
114113adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
11529ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑇 ⊆ ℝ)
11679ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
117 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢𝑇)
118 infrelb 11604 . . . . . . . . . . . . . . . . . . . . 21 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
119115, 116, 117, 118syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
120112, 110, 107, 114, 119ltletrd 10778 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢)
121107, 110, 111absdifltd 14773 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ↔ ((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))))
122121biimprd 250 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2))) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
123120, 122mpand 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
124 rphalflt 12397 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ+ → (𝑠 / 2) < 𝑠)
125124ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) < 𝑠)
126107, 110resubcld 11046 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℝ)
127126recnd 10647 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℂ)
128127abscld 14776 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ)
129 rpre 12376 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
130129ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑠 ∈ ℝ)
131 lttr 10695 . . . . . . . . . . . . . . . . . . . 20 (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ ∧ (𝑠 / 2) ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
132128, 111, 130, 131syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
133125, 132mpan2d 692 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
134123, 133syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
135109, 134sylbird 262 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢 → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
136135con1d 147 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
137107recnd 10647 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℂ)
138 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢𝑝 = 𝑢)
139 oveq1 7140 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑢 → (𝑝↑3) = (𝑢↑3))
140139oveq2d 7149 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢 → (𝐶 · (𝑝↑3)) = (𝐶 · (𝑢↑3)))
141138, 140oveq12d 7151 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑢 → (𝑝 − (𝐶 · (𝑝↑3))) = (𝑢 − (𝐶 · (𝑢↑3))))
142 eqid 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) = (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))
143 ovex 7166 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 − (𝐶 · (𝑢↑3))) ∈ V
144141, 142, 143fvmpt 6744 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
145137, 144syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
14683ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℂ)
147 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → 𝑝 = inf(𝑇, ℝ, < ))
148 oveq1 7140 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝↑3) = (inf(𝑇, ℝ, < )↑3))
149148oveq2d 7149 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → (𝐶 · (𝑝↑3)) = (𝐶 · (inf(𝑇, ℝ, < )↑3)))
150147, 149oveq12d 7151 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝 − (𝐶 · (𝑝↑3))) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
151 ovex 7166 . . . . . . . . . . . . . . . . . . . . 21 (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ V
152150, 142, 151fvmpt 6744 . . . . . . . . . . . . . . . . . . . 20 (inf(𝑇, ℝ, < ) ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
153146, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
154145, 153oveq12d 7151 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < ))) = ((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
155154fveq2d 6650 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) = (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
156155breq1d 5052 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
1579rpred 12410 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
158157ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝐶 ∈ ℝ)
159 reexpcl 13431 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝑢↑3) ∈ ℝ)
160107, 15, 159sylancl 588 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢↑3) ∈ ℝ)
161158, 160remulcld 10649 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (𝑢↑3)) ∈ ℝ)
162107, 161resubcld 11046 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ ℝ)
16315a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 3 ∈ ℕ0)
164110, 163reexpcld 13512 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ)
165158, 164remulcld 10649 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ)
166110, 165resubcld 11046 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ ℝ)
167162, 166, 165absdifltd 14773 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
168165recnd 10647 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℂ)
169146, 168npcand 10979 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) = inf(𝑇, ℝ, < ))
170169breq2d 5054 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) ↔ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < )))
171 pntlem3.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
172171ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
173 infrelb 11604 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤 ∧ (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
174115, 116, 172, 173syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
175110, 162, 174lensymd 10769 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ¬ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ))
176175pm2.21d 121 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
177170, 176sylbid 242 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
178177adantld 493 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3)))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
179167, 178sylbid 242 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
180156, 179sylbid 242 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
181136, 180jad 189 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
182181ralimdva 3164 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
18364ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
18479ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
185 infregelb 11603 . . . . . . . . . . . . . 14 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
186106, 183, 184, 98, 185syl31anc 1369 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
187182, 186sylibrd 261 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
188105, 187syld 47 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
189100, 188mtod 200 . . . . . . . . . 10 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ ∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
190189nrexdv 3257 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ¬ ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
19192, 190pm2.65da 815 . . . . . . . 8 (𝜑 → ¬ 0 < inf(𝑇, ℝ, < ))
192191adantr 483 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ¬ 0 < inf(𝑇, ℝ, < ))
19329adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
19464adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
19579adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
196129adantl 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ)
197 infregelb 11603 . . . . . . . . . 10 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ 𝑠 ∈ ℝ) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
198193, 194, 195, 196, 197syl31anc 1369 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
19922raleqi 3396 . . . . . . . . . 10 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤)
200 breq2 5046 . . . . . . . . . . 11 (𝑤 = 𝑡 → (𝑠𝑤𝑠𝑡))
201200ralrab2 3670 . . . . . . . . . 10 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
202199, 201bitri 277 . . . . . . . . 9 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
203198, 202syl6bb 289 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡)))
204 rpgt0 12380 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 < 𝑠)
205204adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 0 < 𝑠)
20681adantr 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
207 ltletr 10710 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ inf(𝑇, ℝ, < ) ∈ ℝ) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
20824, 196, 206, 207mp3an2i 1462 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
209205, 208mpand 693 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) → 0 < inf(𝑇, ℝ, < )))
210203, 209sylbird 262 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → (∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡) → 0 < inf(𝑇, ℝ, < )))
211192, 210mtod 200 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
212 rexanali 3252 . . . . . 6 (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) ↔ ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
213211, 212sylibr 236 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → ∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡))
214 fveq2 6646 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑅𝑧) = (𝑅𝑥))
215 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑧 = 𝑥)
216214, 215oveq12d 7151 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑅𝑧) / 𝑧) = ((𝑅𝑥) / 𝑥))
217216fveq2d 6650 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅𝑥) / 𝑥)))
218217breq1d 5052 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
219218cbvralvw 3428 . . . . . . . . . . 11 (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡)
220 rpre 12376 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
221220ad2antll 727 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℝ)
222 simprl 769 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦𝑥)
223 simplr 767 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
224223rpred 12410 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ)
225 elicopnf 12814 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
226224, 225syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
227221, 222, 226mpbir2and 711 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ (𝑦[,)+∞))
228 pntlem3.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
229228pntrval 26125 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
230229ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
231230oveq1d 7148 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
232 chpcl 25688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
233221, 232syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℝ)
234233recnd 10647 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℂ)
235 rpcn 12378 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
236235ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℂ)
237 rpne0 12384 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ≠ 0)
238237ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ≠ 0)
239234, 236, 236, 238divsubdird 11433 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
240236, 238dividd 11392 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 / 𝑥) = 1)
241240oveq2d 7149 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
242231, 239, 2413eqtrrd 2860 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) = ((𝑅𝑥) / 𝑥))
243242fveq2d 6650 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) = (abs‘((𝑅𝑥) / 𝑥)))
244243breq1d 5052 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
245 simprr 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → ¬ 𝑠𝑡)
246245ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ¬ 𝑠𝑡)
24728ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (0[,]𝐴) ⊆ ℝ)
248247ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (0[,]𝐴) ⊆ ℝ)
249 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → 𝑡 ∈ (0[,]𝐴))
250249adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ (0[,]𝐴))
251248, 250sseldd 3947 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ ℝ)
252 simp-4r 782 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
253252rpred 12410 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ)
254251, 253ltnled 10765 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑡 < 𝑠 ↔ ¬ 𝑠𝑡))
255246, 254mpbird 259 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 < 𝑠)
256220, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
257 rerpdivcl 12398 . . . . . . . . . . . . . . . . . . . . . . 23 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258256, 257mpancom 686 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
259258ad2antll 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
260 resubcl 10928 . . . . . . . . . . . . . . . . . . . . 21 ((((ψ‘𝑥) / 𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
261259, 43, 260sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
262261recnd 10647 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℂ)
263262abscld 14776 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ)
264 lelttr 10709 . . . . . . . . . . . . . . . . . 18 (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ ∧ 𝑡 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
265263, 251, 253, 264syl3anc 1367 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
266255, 265mpan2d 692 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
267244, 266sylbird 262 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
268227, 267embantd 59 . . . . . . . . . . . . . 14 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
269268exp32 423 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (𝑦𝑥 → (𝑥 ∈ ℝ+ → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
270269com24 95 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (𝑥 ∈ ℝ+ → (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
271270ralimdv2 3163 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
272219, 271syl5bi 244 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
273272reximdva 3261 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
274273anassrs 470 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ¬ 𝑠𝑡) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
275274impancom 454 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡) → (¬ 𝑠𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
276275expimpd 456 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) → ((∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
277276rexlimdva 3271 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
278213, 277mpd 15 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
279 ssrexv 4013 . . . 4 (ℝ+ ⊆ ℝ → (∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
2801, 278, 279mpsyl 68 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
281280ralrimiva 3169 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
282258recnd 10647 . . . . 5 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
283282rgen 3135 . . . 4 𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ
284283a1i 11 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ)
2851a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
286 1cnd 10614 . . 3 (𝜑 → 1 ∈ ℂ)
287284, 285, 286rlim2 14833 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
288281, 287mpbird 259 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3006  wral 3125  wrex 3126  {crab 3129  wss 3913  c0 4269   class class class wbr 5042  cmpt 5122  cfv 6331  (class class class)co 7133  infcinf 8883  cc 10513  cr 10514  0cc0 10515  1c1 10516   + caddc 10518   · cmul 10520  +∞cpnf 10650  *cxr 10652   < clt 10653  cle 10654  cmin 10848   / cdiv 11275  2c2 11671  3c3 11672  0cn0 11876  cz 11960  +crp 12368  [,)cico 12719  [,]cicc 12720  cexp 13414  abscabs 14573  𝑟 crli 14822  TopOpenctopn 16674  fldccnfld 20521   Cn ccn 21808   ×t ctx 22144  cnccncf 23460  ψcchp 25657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-addf 10594  ax-mulf 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-map 8386  df-pm 8387  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-fi 8853  df-sup 8884  df-inf 8885  df-oi 8952  df-dju 9308  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-xneg 12486  df-xadd 12487  df-xmul 12488  df-ioo 12721  df-ioc 12722  df-ico 12723  df-icc 12724  df-fz 12877  df-fzo 13018  df-fl 13146  df-mod 13222  df-seq 13354  df-exp 13415  df-fac 13619  df-bc 13648  df-hash 13676  df-shft 14406  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-limsup 14808  df-clim 14825  df-rlim 14826  df-sum 15023  df-ef 15401  df-sin 15403  df-cos 15404  df-pi 15406  df-dvds 15588  df-gcd 15822  df-prm 15994  df-pc 16152  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-hom 16568  df-cco 16569  df-rest 16675  df-topn 16676  df-0g 16694  df-gsum 16695  df-topgen 16696  df-pt 16697  df-prds 16700  df-xrs 16754  df-qtop 16759  df-imas 16760  df-xps 16762  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-mulg 18204  df-cntz 18426  df-cmn 18887  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-fbas 20518  df-fg 20519  df-cnfld 20522  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cld 21603  df-ntr 21604  df-cls 21605  df-nei 21682  df-lp 21720  df-perf 21721  df-cn 21811  df-cnp 21812  df-haus 21899  df-tx 22146  df-hmeo 22339  df-fil 22430  df-fm 22522  df-flim 22523  df-flf 22524  df-xms 22906  df-ms 22907  df-tms 22908  df-cncf 23462  df-limc 24448  df-dv 24449  df-log 25127  df-vma 25662  df-chp 25663
This theorem is referenced by:  pntleml  26174
  Copyright terms: Public domain W3C validator