MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlem3 Structured version   Visualization version   GIF version

Theorem pntlem3 27520
Description: Lemma for pnt 27525. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlem3.1 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
pntlem3.2 (𝜑𝐶 ∈ ℝ+)
pntlem3.3 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
Assertion
Ref Expression
pntlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐴   𝑢,𝑎,𝑥,𝑦,𝑧   𝑢,𝐶   𝑢,𝑡,𝑅,𝑥,𝑦,𝑧   𝑡,𝑎   𝑢,𝑇,𝑥   𝜑,𝑡,𝑥,𝑦,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑢,𝑎)   𝐶(𝑥,𝑦,𝑧,𝑡,𝑎)   𝑅(𝑎)   𝑇(𝑦,𝑧,𝑡,𝑎)

Proof of Theorem pntlem3
Dummy variables 𝑠 𝑤 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 12959 . . . 4 + ⊆ ℝ
2 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32subcn 24755 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
43a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
5 ssid 3969 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
6 cncfmptid 24806 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
75, 5, 6mp2an 692 . . . . . . . . . . . 12 (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ)
87a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ))
9 pntlem3.2 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ+)
109adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℝ+)
1110rpcnd 12997 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈ ℂ)
125a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ℂ ⊆ ℂ)
13 cncfmptc 24805 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
1411, 12, 12, 13syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ))
15 3nn0 12460 . . . . . . . . . . . . . 14 3 ∈ ℕ0
162expcn 24763 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1715, 16mp1i 13 . . . . . . . . . . . . 13 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
182cncfcn1 24804 . . . . . . . . . . . . 13 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
1917, 18eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈ (ℂ–cn→ℂ))
2014, 19mulcncf 25346 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝐶 · (𝑝↑3))) ∈ (ℂ–cn→ℂ))
212, 4, 8, 20cncfmpt2f 24808 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ))
22 pntlem3.1 . . . . . . . . . . . . . . 15 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
2322ssrab3 4045 . . . . . . . . . . . . . 14 𝑇 ⊆ (0[,]𝐴)
24 0re 11176 . . . . . . . . . . . . . . 15 0 ∈ ℝ
25 pntlem3.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ+)
2625rpred 12995 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
27 iccssre 13390 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0[,]𝐴) ⊆ ℝ)
2824, 26, 27sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (0[,]𝐴) ⊆ ℝ)
2923, 28sstrid 3958 . . . . . . . . . . . . 13 (𝜑𝑇 ⊆ ℝ)
30 0xr 11221 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
3125rpxrd 12996 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
3225rpge0d 12999 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝐴)
33 ubicc2 13426 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]𝐴))
3430, 31, 32, 33mp3an2i 1468 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (0[,]𝐴))
35 1rp 12955 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
36 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝑅𝑥) = (𝑅𝑧))
37 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧𝑥 = 𝑧)
3836, 37oveq12d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → ((𝑅𝑥) / 𝑥) = ((𝑅𝑧) / 𝑧))
3938fveq2d 6862 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘((𝑅𝑧) / 𝑧)))
4039breq1d 5117 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
41 pntlem3.A . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4241adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
43 1re 11174 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
44 elicopnf 13406 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℝ → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4543, 44mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤ 𝑧)))
4645simprbda 498 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ)
47 0red 11177 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 ∈ ℝ)
4843a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ∈ ℝ)
49 0lt1 11700 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
5049a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 1)
5145simplbda 499 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (1[,)+∞)) → 1 ≤ 𝑧)
5247, 48, 46, 50, 51ltletrd 11334 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (1[,)+∞)) → 0 < 𝑧)
5346, 52elrpd 12992 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (1[,)+∞)) → 𝑧 ∈ ℝ+)
5440, 42, 53rspcdva 3589 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (1[,)+∞)) → (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5554ralrimiva 3125 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
56 oveq1 7394 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑦[,)+∞) = (1[,)+∞))
5756raleqdv 3299 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴 ↔ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
5857rspcev 3588 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
5935, 55, 58sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴)
60 breq2 5111 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝐴 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6160rexralbidv 3203 . . . . . . . . . . . . . . . 16 (𝑡 = 𝐴 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6261, 22elrab2 3662 . . . . . . . . . . . . . . 15 (𝐴𝑇 ↔ (𝐴 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝐴))
6334, 59, 62sylanbrc 583 . . . . . . . . . . . . . 14 (𝜑𝐴𝑇)
6463ne0d 4305 . . . . . . . . . . . . 13 (𝜑𝑇 ≠ ∅)
65 elicc2 13372 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6624, 26, 65sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴)))
6766biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]𝐴)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡𝐴))
6867simp2d 1143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]𝐴)) → 0 ≤ 𝑡)
6968a1d 25 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7069ralrimiva 3125 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7122raleqi 3297 . . . . . . . . . . . . . . . 16 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤)
72 breq2 5111 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑡 → (0 ≤ 𝑤 ↔ 0 ≤ 𝑡))
7372ralrab2 3669 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7471, 73bitri 275 . . . . . . . . . . . . . . 15 (∀𝑤𝑇 0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡))
7570, 74sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑤𝑇 0 ≤ 𝑤)
76 breq1 5110 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
7776ralbidv 3156 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (∀𝑤𝑇 𝑥𝑤 ↔ ∀𝑤𝑇 0 ≤ 𝑤))
7877rspcev 3588 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ ∀𝑤𝑇 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
7924, 75, 78sylancr 587 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
80 infrecl 12165 . . . . . . . . . . . . 13 ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) → inf(𝑇, ℝ, < ) ∈ ℝ)
8129, 64, 79, 80syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℝ)
8281recnd 11202 . . . . . . . . . . 11 (𝜑 → inf(𝑇, ℝ, < ) ∈ ℂ)
8382adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℂ)
84 elrp 12953 . . . . . . . . . . . . . 14 (inf(𝑇, ℝ, < ) ∈ ℝ+ ↔ (inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )))
8584biimpri 228 . . . . . . . . . . . . 13 ((inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
8681, 85sylan 580 . . . . . . . . . . . 12 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈ ℝ+)
87 3z 12566 . . . . . . . . . . . 12 3 ∈ ℤ
88 rpexpcl 14045 . . . . . . . . . . . 12 ((inf(𝑇, ℝ, < ) ∈ ℝ+ ∧ 3 ∈ ℤ) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
8986, 87, 88sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ+)
9010, 89rpmulcld 13011 . . . . . . . . . 10 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+)
91 cncfi 24787 . . . . . . . . . 10 (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ) ∧ inf(𝑇, ℝ, < ) ∈ ℂ ∧ (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9221, 83, 90, 91syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
9381ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
94 rphalfcl 12980 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ+ → (𝑠 / 2) ∈ ℝ+)
9594adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ+)
9693, 95ltaddrpd 13028 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))
9795rpred 12995 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ)
9893, 97readdcld 11203 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
9993, 98ltnled 11321 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
10096, 99mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ))
101 ax-resscn 11125 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
10229, 101sstrdi 3959 . . . . . . . . . . . . . 14 (𝜑𝑇 ⊆ ℂ)
103102ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℂ)
104 ssralv 4015 . . . . . . . . . . . . 13 (𝑇 ⊆ ℂ → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
105103, 104syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
10629ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
107106sselda 3946 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℝ)
10898adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ)
109107, 108ltnled 11321 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
11081ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℝ)
11197adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) ∈ ℝ)
112110, 111resubcld 11606 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) ∈ ℝ)
11393, 95ltsubrpd 13027 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
114113adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, < ))
11529ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑇 ⊆ ℝ)
11679ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
117 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢𝑇)
118 infrelb 12168 . . . . . . . . . . . . . . . . . . . . 21 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
119115, 116, 117, 118syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢)
120112, 110, 107, 114, 119ltletrd 11334 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢)
121107, 110, 111absdifltd 15402 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ↔ ((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)))))
122121biimprd 248 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2))) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
123120, 122mpand 695 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2)))
124 rphalflt 12982 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℝ+ → (𝑠 / 2) < 𝑠)
125124ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑠 / 2) < 𝑠)
126107, 110resubcld 11606 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℝ)
127126recnd 11202 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈ ℂ)
128127abscld 15405 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ)
129 rpre 12960 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
130129ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑠 ∈ ℝ)
131 lttr 11250 . . . . . . . . . . . . . . . . . . . 20 (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈ ℝ ∧ (𝑠 / 2) ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
132128, 111, 130, 131syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
133125, 132mpan2d 694 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
134123, 133syld 47 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
135109, 134sylbird 260 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢 → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠))
136135con1d 145 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (¬ (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
137107recnd 11202 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝑢 ∈ ℂ)
138 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢𝑝 = 𝑢)
139 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑢 → (𝑝↑3) = (𝑢↑3))
140139oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = 𝑢 → (𝐶 · (𝑝↑3)) = (𝐶 · (𝑢↑3)))
141138, 140oveq12d 7405 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑢 → (𝑝 − (𝐶 · (𝑝↑3))) = (𝑢 − (𝐶 · (𝑢↑3))))
142 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) = (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))
143 ovex 7420 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 − (𝐶 · (𝑢↑3))) ∈ V
144141, 142, 143fvmpt 6968 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
145137, 144syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3))))
14683ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ∈ ℂ)
147 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → 𝑝 = inf(𝑇, ℝ, < ))
148 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝↑3) = (inf(𝑇, ℝ, < )↑3))
149148oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = inf(𝑇, ℝ, < ) → (𝐶 · (𝑝↑3)) = (𝐶 · (inf(𝑇, ℝ, < )↑3)))
150147, 149oveq12d 7405 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = inf(𝑇, ℝ, < ) → (𝑝 − (𝐶 · (𝑝↑3))) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
151 ovex 7420 . . . . . . . . . . . . . . . . . . . . 21 (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ V
152150, 142, 151fvmpt 6968 . . . . . . . . . . . . . . . . . . . 20 (inf(𝑇, ℝ, < ) ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
153146, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))
154145, 153oveq12d 7405 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < ))) = ((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3)))))
155154fveq2d 6862 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) = (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
156155breq1d 5117 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
1579rpred 12995 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
158157ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 𝐶 ∈ ℝ)
159 reexpcl 14043 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℝ ∧ 3 ∈ ℕ0) → (𝑢↑3) ∈ ℝ)
160107, 15, 159sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢↑3) ∈ ℝ)
161158, 160remulcld 11204 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (𝑢↑3)) ∈ ℝ)
162107, 161resubcld 11606 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ ℝ)
16315a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → 3 ∈ ℕ0)
164110, 163reexpcld 14128 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < )↑3) ∈ ℝ)
165158, 164remulcld 11204 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℝ)
166110, 165resubcld 11606 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈ ℝ)
167162, 166, 165absdifltd 15402 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔ (((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))))))
168165recnd 11202 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈ ℂ)
169146, 168npcand 11537 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) = inf(𝑇, ℝ, < ))
170169breq2d 5119 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) ↔ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < )))
171 pntlem3.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
172171ad4ant14 752 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇)
173 infrelb 12168 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤 ∧ (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
174115, 116, 172, 173syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3))))
175110, 162, 174lensymd 11325 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ¬ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ))
176175pm2.21d 121 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
177170, 176sylbid 240 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
178177adantld 490 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3)))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
179167, 178sylbid 240 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
180156, 179sylbid 240 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
181136, 180jad 187 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) ∧ 𝑢𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
182181ralimdva 3145 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
18364ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
18479ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
185 infregelb 12167 . . . . . . . . . . . . . 14 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
186106, 183, 184, 98, 185syl31anc 1375 . . . . . . . . . . . . 13 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑢𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢))
187182, 186sylibrd 259 . . . . . . . . . . . 12 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
188105, 187syld 47 . . . . . . . . . . 11 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → (∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < )))
189100, 188mtod 198 . . . . . . . . . 10 (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+) → ¬ ∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
190189nrexdv 3128 . . . . . . . . 9 ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ¬ ∃𝑠 ∈ ℝ+𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))))
19192, 190pm2.65da 816 . . . . . . . 8 (𝜑 → ¬ 0 < inf(𝑇, ℝ, < ))
192191adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ¬ 0 < inf(𝑇, ℝ, < ))
19329adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ⊆ ℝ)
19464adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑇 ≠ ∅)
19579adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤)
196129adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ)
197 infregelb 12167 . . . . . . . . . 10 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑇 𝑥𝑤) ∧ 𝑠 ∈ ℝ) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
198193, 194, 195, 196, 197syl31anc 1375 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤𝑇 𝑠𝑤))
19922raleqi 3297 . . . . . . . . . 10 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤)
200 breq2 5111 . . . . . . . . . . 11 (𝑤 = 𝑡 → (𝑠𝑤𝑠𝑡))
201200ralrab2 3669 . . . . . . . . . 10 (∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
202199, 201bitri 275 . . . . . . . . 9 (∀𝑤𝑇 𝑠𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
203198, 202bitrdi 287 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡)))
204 rpgt0 12964 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 < 𝑠)
205204adantl 481 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 0 < 𝑠)
20681adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈ ℝ)
207 ltletr 11266 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ inf(𝑇, ℝ, < ) ∈ ℝ) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
20824, 196, 206, 207mp3an2i 1468 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → ((0 < 𝑠𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, < )))
209205, 208mpand 695 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) → 0 < inf(𝑇, ℝ, < )))
210203, 209sylbird 260 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → (∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡) → 0 < inf(𝑇, ℝ, < )))
211192, 210mtod 198 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
212 rexanali 3084 . . . . . 6 (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) ↔ ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡𝑠𝑡))
213211, 212sylibr 234 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → ∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡))
214 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑅𝑧) = (𝑅𝑥))
215 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥𝑧 = 𝑥)
216214, 215oveq12d 7405 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑅𝑧) / 𝑧) = ((𝑅𝑥) / 𝑥))
217216fveq2d 6862 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅𝑥) / 𝑥)))
218217breq1d 5117 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
219218cbvralvw 3215 . . . . . . . . . . 11 (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡)
220 rpre 12960 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
221220ad2antll 729 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℝ)
222 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦𝑥)
223 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
224223rpred 12995 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑦 ∈ ℝ)
225 elicopnf 13406 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
226224, 225syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦𝑥)))
227221, 222, 226mpbir2and 713 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ (𝑦[,)+∞))
228 pntlem3.r . . . . . . . . . . . . . . . . . . . . . 22 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
229228pntrval 27473 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
230229ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
231230oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
232 chpcl 27034 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
233221, 232syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℝ)
234233recnd 11202 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (ψ‘𝑥) ∈ ℂ)
235 rpcn 12962 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
236235ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ∈ ℂ)
237 rpne0 12968 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ+𝑥 ≠ 0)
238237ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑥 ≠ 0)
239234, 236, 236, 238divsubdird 11997 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
240236, 238dividd 11956 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑥 / 𝑥) = 1)
241240oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
242231, 239, 2413eqtrrd 2769 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) = ((𝑅𝑥) / 𝑥))
243242fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) = (abs‘((𝑅𝑥) / 𝑥)))
244243breq1d 5117 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 ↔ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡))
245 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → ¬ 𝑠𝑡)
246245ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ¬ 𝑠𝑡)
24728ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (0[,]𝐴) ⊆ ℝ)
248247ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (0[,]𝐴) ⊆ ℝ)
249 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → 𝑡 ∈ (0[,]𝐴))
250249adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ (0[,]𝐴))
251248, 250sseldd 3947 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 ∈ ℝ)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ+)
253252rpred 12995 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑠 ∈ ℝ)
254251, 253ltnled 11321 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (𝑡 < 𝑠 ↔ ¬ 𝑠𝑡))
255246, 254mpbird 257 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → 𝑡 < 𝑠)
256220, 232syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
257 rerpdivcl 12983 . . . . . . . . . . . . . . . . . . . . . . 23 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258256, 257mpancom 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
259258ad2antll 729 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
260 resubcl 11486 . . . . . . . . . . . . . . . . . . . . 21 ((((ψ‘𝑥) / 𝑥) ∈ ℝ ∧ 1 ∈ ℝ) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
261259, 43, 260sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ)
262261recnd 11202 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℂ)
263262abscld 15405 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ)
264 lelttr 11264 . . . . . . . . . . . . . . . . . 18 (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ ∧ 𝑡 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
265263, 251, 253, 264syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → (((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
266255, 265mpan2d 694 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
267244, 266sylbird 260 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
268227, 267embantd 59 . . . . . . . . . . . . . 14 (((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦𝑥𝑥 ∈ ℝ+)) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
269268exp32 420 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (𝑦𝑥 → (𝑥 ∈ ℝ+ → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
270269com24 95 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡) → (𝑥 ∈ ℝ+ → (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))))
271270ralimdv2 3142 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
272219, 271biimtrid 242 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
273272reximdva 3146 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠𝑡)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
274273anassrs 467 . . . . . . . 8 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ¬ 𝑠𝑡) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
275274impancom 451 . . . . . . 7 ((((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡) → (¬ 𝑠𝑡 → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
276275expimpd 453 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) → ((∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
277276rexlimdva 3134 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → (∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠𝑡) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
278213, 277mpd 15 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
279 ssrexv 4016 . . . 4 (ℝ+ ⊆ ℝ → (∃𝑦 ∈ ℝ+𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
2801, 278, 279mpsyl 68 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
281280ralrimiva 3125 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))
282258recnd 11202 . . . . 5 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℂ)
283282rgen 3046 . . . 4 𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ
284283a1i 11 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ)
2851a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
286 1cnd 11169 . . 3 (𝜑 → 1 ∈ ℂ)
287284, 285, 286rlim2 15462 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1 ↔ ∀𝑠 ∈ ℝ+𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))
288281, 287mpbird 257 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  infcinf 9392  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  3c3 12242  0cn0 12442  cz 12529  +crp 12951  [,)cico 13308  [,]cicc 13309  cexp 14026  abscabs 15200  𝑟 crli 15451  TopOpenctopn 17384  fldccnfld 21264   Cn ccn 23111   ×t ctx 23447  cnccncf 24769  ψcchp 27003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-vma 27008  df-chp 27009
This theorem is referenced by:  pntleml  27522
  Copyright terms: Public domain W3C validator