MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scshwfzeqfzo Structured version   Visualization version   GIF version

Theorem scshwfzeqfzo 14467
Description: For a nonempty word the sets of shifted words, expressd by a finite interval of integers or by a half-open integer range are identical. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
scshwfzeqfzo ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝑁,𝑦   𝑛,𝑉,𝑦   𝑛,𝑋,𝑦

Proof of Theorem scshwfzeqfzo
StepHypRef Expression
1 lencl 14164 . . . . . . . . . . . 12 (𝑋 ∈ Word 𝑉 → (♯‘𝑋) ∈ ℕ0)
2 elnn0uz 12552 . . . . . . . . . . . 12 ((♯‘𝑋) ∈ ℕ0 ↔ (♯‘𝑋) ∈ (ℤ‘0))
31, 2sylib 217 . . . . . . . . . . 11 (𝑋 ∈ Word 𝑉 → (♯‘𝑋) ∈ (ℤ‘0))
43adantr 480 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → (♯‘𝑋) ∈ (ℤ‘0))
5 eleq1 2826 . . . . . . . . . . 11 (𝑁 = (♯‘𝑋) → (𝑁 ∈ (ℤ‘0) ↔ (♯‘𝑋) ∈ (ℤ‘0)))
65adantl 481 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → (𝑁 ∈ (ℤ‘0) ↔ (♯‘𝑋) ∈ (ℤ‘0)))
74, 6mpbird 256 . . . . . . . . 9 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → 𝑁 ∈ (ℤ‘0))
873adant2 1129 . . . . . . . 8 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 𝑁 ∈ (ℤ‘0))
98adantr 480 . . . . . . 7 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → 𝑁 ∈ (ℤ‘0))
10 fzisfzounsn 13427 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
119, 10syl 17 . . . . . 6 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
1211rexeqdv 3340 . . . . 5 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ ((0..^𝑁) ∪ {𝑁})𝑦 = (𝑋 cyclShift 𝑛)))
13 rexun 4120 . . . . 5 (∃𝑛 ∈ ((0..^𝑁) ∪ {𝑁})𝑦 = (𝑋 cyclShift 𝑛) ↔ (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)))
1412, 13bitrdi 286 . . . 4 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛))))
15 fvex 6769 . . . . . . . . . . . 12 (♯‘𝑋) ∈ V
16 eleq1 2826 . . . . . . . . . . . 12 (𝑁 = (♯‘𝑋) → (𝑁 ∈ V ↔ (♯‘𝑋) ∈ V))
1715, 16mpbiri 257 . . . . . . . . . . 11 (𝑁 = (♯‘𝑋) → 𝑁 ∈ V)
18 oveq2 7263 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑋 cyclShift 𝑛) = (𝑋 cyclShift 𝑁))
1918eqeq2d 2749 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2019rexsng 4607 . . . . . . . . . . 11 (𝑁 ∈ V → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2117, 20syl 17 . . . . . . . . . 10 (𝑁 = (♯‘𝑋) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
22213ad2ant3 1133 . . . . . . . . 9 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2322adantr 480 . . . . . . . 8 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
24 oveq2 7263 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝑋) → (𝑋 cyclShift 𝑁) = (𝑋 cyclShift (♯‘𝑋)))
25243ad2ant3 1133 . . . . . . . . . . . 12 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 𝑁) = (𝑋 cyclShift (♯‘𝑋)))
26 cshwn 14438 . . . . . . . . . . . . 13 (𝑋 ∈ Word 𝑉 → (𝑋 cyclShift (♯‘𝑋)) = 𝑋)
27263ad2ant1 1131 . . . . . . . . . . . 12 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift (♯‘𝑋)) = 𝑋)
2825, 27eqtrd 2778 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 𝑁) = 𝑋)
2928eqeq2d 2749 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑦 = (𝑋 cyclShift 𝑁) ↔ 𝑦 = 𝑋))
3029adantr 480 . . . . . . . . 9 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = (𝑋 cyclShift 𝑁) ↔ 𝑦 = 𝑋))
31 cshw0 14435 . . . . . . . . . . . . . . 15 (𝑋 ∈ Word 𝑉 → (𝑋 cyclShift 0) = 𝑋)
32313ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 0) = 𝑋)
33 lennncl 14165 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
34333adant3 1130 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (♯‘𝑋) ∈ ℕ)
35 eleq1 2826 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑋) → (𝑁 ∈ ℕ ↔ (♯‘𝑋) ∈ ℕ))
36353ad2ant3 1133 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑁 ∈ ℕ ↔ (♯‘𝑋) ∈ ℕ))
3734, 36mpbird 256 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 𝑁 ∈ ℕ)
38 lbfzo0 13355 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
3937, 38sylibr 233 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 0 ∈ (0..^𝑁))
40 oveq2 7263 . . . . . . . . . . . . . . . . . . . 20 (0 = 𝑛 → (𝑋 cyclShift 0) = (𝑋 cyclShift 𝑛))
4140eqeq1d 2740 . . . . . . . . . . . . . . . . . . 19 (0 = 𝑛 → ((𝑋 cyclShift 0) = 𝑋 ↔ (𝑋 cyclShift 𝑛) = 𝑋))
4241eqcoms 2746 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → ((𝑋 cyclShift 0) = 𝑋 ↔ (𝑋 cyclShift 𝑛) = 𝑋))
43 eqcom 2745 . . . . . . . . . . . . . . . . . 18 ((𝑋 cyclShift 𝑛) = 𝑋𝑋 = (𝑋 cyclShift 𝑛))
4442, 43bitrdi 286 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4544adantl 481 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑛 = 0) → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4645biimpd 228 . . . . . . . . . . . . . . 15 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑛 = 0) → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4739, 46rspcimedv 3542 . . . . . . . . . . . . . 14 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → ((𝑋 cyclShift 0) = 𝑋 → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛)))
4832, 47mpd 15 . . . . . . . . . . . . 13 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
4948adantr 480 . . . . . . . . . . . 12 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
5049adantr 480 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
51 eqeq1 2742 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑋 = (𝑋 cyclShift 𝑛)))
5251adantl 481 . . . . . . . . . . . 12 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑋 = (𝑋 cyclShift 𝑛)))
5352rexbidv 3225 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛)))
5450, 53mpbird 256 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛))
5554ex 412 . . . . . . . . 9 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = 𝑋 → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5630, 55sylbid 239 . . . . . . . 8 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = (𝑋 cyclShift 𝑁) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5723, 56sylbid 239 . . . . . . 7 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5857com12 32 . . . . . 6 (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) → (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5958jao1i 854 . . . . 5 ((∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)) → (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6059com12 32 . . . 4 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ((∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6114, 60sylbid 239 . . 3 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
62 fzossfz 13334 . . . 4 (0..^𝑁) ⊆ (0...𝑁)
63 ssrexv 3984 . . . 4 ((0..^𝑁) ⊆ (0...𝑁) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6462, 63mp1i 13 . . 3 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6561, 64impbid 211 . 2 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6665rabbidva 3402 1 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  cun 3881  wss 3883  c0 4253  {csn 4558  cfv 6418  (class class class)co 7255  0cc0 10802  cn 11903  0cn0 12163  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   cyclShift ccsh 14429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430
This theorem is referenced by:  hashecclwwlkn1  28342  umgrhashecclwwlk  28343
  Copyright terms: Public domain W3C validator