MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scshwfzeqfzo Structured version   Visualization version   GIF version

Theorem scshwfzeqfzo 14539
Description: For a nonempty word the sets of shifted words, expressd by a finite interval of integers or by a half-open integer range are identical. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
scshwfzeqfzo ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝑁,𝑦   𝑛,𝑉,𝑦   𝑛,𝑋,𝑦

Proof of Theorem scshwfzeqfzo
StepHypRef Expression
1 lencl 14236 . . . . . . . . . . . 12 (𝑋 ∈ Word 𝑉 → (♯‘𝑋) ∈ ℕ0)
2 elnn0uz 12623 . . . . . . . . . . . 12 ((♯‘𝑋) ∈ ℕ0 ↔ (♯‘𝑋) ∈ (ℤ‘0))
31, 2sylib 217 . . . . . . . . . . 11 (𝑋 ∈ Word 𝑉 → (♯‘𝑋) ∈ (ℤ‘0))
43adantr 481 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → (♯‘𝑋) ∈ (ℤ‘0))
5 eleq1 2826 . . . . . . . . . . 11 (𝑁 = (♯‘𝑋) → (𝑁 ∈ (ℤ‘0) ↔ (♯‘𝑋) ∈ (ℤ‘0)))
65adantl 482 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → (𝑁 ∈ (ℤ‘0) ↔ (♯‘𝑋) ∈ (ℤ‘0)))
74, 6mpbird 256 . . . . . . . . 9 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → 𝑁 ∈ (ℤ‘0))
873adant2 1130 . . . . . . . 8 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 𝑁 ∈ (ℤ‘0))
98adantr 481 . . . . . . 7 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → 𝑁 ∈ (ℤ‘0))
10 fzisfzounsn 13499 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
119, 10syl 17 . . . . . 6 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
1211rexeqdv 3349 . . . . 5 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ ((0..^𝑁) ∪ {𝑁})𝑦 = (𝑋 cyclShift 𝑛)))
13 rexun 4124 . . . . 5 (∃𝑛 ∈ ((0..^𝑁) ∪ {𝑁})𝑦 = (𝑋 cyclShift 𝑛) ↔ (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)))
1412, 13bitrdi 287 . . . 4 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛))))
15 fvex 6787 . . . . . . . . . . . 12 (♯‘𝑋) ∈ V
16 eleq1 2826 . . . . . . . . . . . 12 (𝑁 = (♯‘𝑋) → (𝑁 ∈ V ↔ (♯‘𝑋) ∈ V))
1715, 16mpbiri 257 . . . . . . . . . . 11 (𝑁 = (♯‘𝑋) → 𝑁 ∈ V)
18 oveq2 7283 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑋 cyclShift 𝑛) = (𝑋 cyclShift 𝑁))
1918eqeq2d 2749 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2019rexsng 4610 . . . . . . . . . . 11 (𝑁 ∈ V → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2117, 20syl 17 . . . . . . . . . 10 (𝑁 = (♯‘𝑋) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
22213ad2ant3 1134 . . . . . . . . 9 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2322adantr 481 . . . . . . . 8 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
24 oveq2 7283 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝑋) → (𝑋 cyclShift 𝑁) = (𝑋 cyclShift (♯‘𝑋)))
25243ad2ant3 1134 . . . . . . . . . . . 12 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 𝑁) = (𝑋 cyclShift (♯‘𝑋)))
26 cshwn 14510 . . . . . . . . . . . . 13 (𝑋 ∈ Word 𝑉 → (𝑋 cyclShift (♯‘𝑋)) = 𝑋)
27263ad2ant1 1132 . . . . . . . . . . . 12 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift (♯‘𝑋)) = 𝑋)
2825, 27eqtrd 2778 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 𝑁) = 𝑋)
2928eqeq2d 2749 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑦 = (𝑋 cyclShift 𝑁) ↔ 𝑦 = 𝑋))
3029adantr 481 . . . . . . . . 9 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = (𝑋 cyclShift 𝑁) ↔ 𝑦 = 𝑋))
31 cshw0 14507 . . . . . . . . . . . . . . 15 (𝑋 ∈ Word 𝑉 → (𝑋 cyclShift 0) = 𝑋)
32313ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 0) = 𝑋)
33 lennncl 14237 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
34333adant3 1131 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (♯‘𝑋) ∈ ℕ)
35 eleq1 2826 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑋) → (𝑁 ∈ ℕ ↔ (♯‘𝑋) ∈ ℕ))
36353ad2ant3 1134 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑁 ∈ ℕ ↔ (♯‘𝑋) ∈ ℕ))
3734, 36mpbird 256 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 𝑁 ∈ ℕ)
38 lbfzo0 13427 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
3937, 38sylibr 233 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 0 ∈ (0..^𝑁))
40 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 (0 = 𝑛 → (𝑋 cyclShift 0) = (𝑋 cyclShift 𝑛))
4140eqeq1d 2740 . . . . . . . . . . . . . . . . . . 19 (0 = 𝑛 → ((𝑋 cyclShift 0) = 𝑋 ↔ (𝑋 cyclShift 𝑛) = 𝑋))
4241eqcoms 2746 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → ((𝑋 cyclShift 0) = 𝑋 ↔ (𝑋 cyclShift 𝑛) = 𝑋))
43 eqcom 2745 . . . . . . . . . . . . . . . . . 18 ((𝑋 cyclShift 𝑛) = 𝑋𝑋 = (𝑋 cyclShift 𝑛))
4442, 43bitrdi 287 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4544adantl 482 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑛 = 0) → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4645biimpd 228 . . . . . . . . . . . . . . 15 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑛 = 0) → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4739, 46rspcimedv 3552 . . . . . . . . . . . . . 14 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → ((𝑋 cyclShift 0) = 𝑋 → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛)))
4832, 47mpd 15 . . . . . . . . . . . . 13 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
4948adantr 481 . . . . . . . . . . . 12 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
5049adantr 481 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
51 eqeq1 2742 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑋 = (𝑋 cyclShift 𝑛)))
5251adantl 482 . . . . . . . . . . . 12 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑋 = (𝑋 cyclShift 𝑛)))
5352rexbidv 3226 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛)))
5450, 53mpbird 256 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛))
5554ex 413 . . . . . . . . 9 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = 𝑋 → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5630, 55sylbid 239 . . . . . . . 8 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = (𝑋 cyclShift 𝑁) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5723, 56sylbid 239 . . . . . . 7 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5857com12 32 . . . . . 6 (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) → (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5958jao1i 855 . . . . 5 ((∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)) → (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6059com12 32 . . . 4 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ((∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6114, 60sylbid 239 . . 3 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
62 fzossfz 13406 . . . 4 (0..^𝑁) ⊆ (0...𝑁)
63 ssrexv 3988 . . . 4 ((0..^𝑁) ⊆ (0...𝑁) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6462, 63mp1i 13 . . 3 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6561, 64impbid 211 . 2 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6665rabbidva 3413 1 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  cun 3885  wss 3887  c0 4256  {csn 4561  cfv 6433  (class class class)co 7275  0cc0 10871  cn 11973  0cn0 12233  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   cyclShift ccsh 14501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502
This theorem is referenced by:  hashecclwwlkn1  28441  umgrhashecclwwlk  28442
  Copyright terms: Public domain W3C validator