MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scshwfzeqfzo Structured version   Visualization version   GIF version

Theorem scshwfzeqfzo 14739
Description: For a nonempty word the sets of shifted words, expressd by a finite interval of integers or by a half-open integer range are identical. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
scshwfzeqfzo ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝑁,𝑦   𝑛,𝑉,𝑦   𝑛,𝑋,𝑦

Proof of Theorem scshwfzeqfzo
StepHypRef Expression
1 lencl 14446 . . . . . . . . . . . 12 (𝑋 ∈ Word 𝑉 → (♯‘𝑋) ∈ ℕ0)
2 elnn0uz 12783 . . . . . . . . . . . 12 ((♯‘𝑋) ∈ ℕ0 ↔ (♯‘𝑋) ∈ (ℤ‘0))
31, 2sylib 218 . . . . . . . . . . 11 (𝑋 ∈ Word 𝑉 → (♯‘𝑋) ∈ (ℤ‘0))
43adantr 480 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → (♯‘𝑋) ∈ (ℤ‘0))
5 eleq1 2819 . . . . . . . . . . 11 (𝑁 = (♯‘𝑋) → (𝑁 ∈ (ℤ‘0) ↔ (♯‘𝑋) ∈ (ℤ‘0)))
65adantl 481 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → (𝑁 ∈ (ℤ‘0) ↔ (♯‘𝑋) ∈ (ℤ‘0)))
74, 6mpbird 257 . . . . . . . . 9 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → 𝑁 ∈ (ℤ‘0))
873adant2 1131 . . . . . . . 8 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 𝑁 ∈ (ℤ‘0))
98adantr 480 . . . . . . 7 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → 𝑁 ∈ (ℤ‘0))
10 fzisfzounsn 13686 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
119, 10syl 17 . . . . . 6 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
1211rexeqdv 3293 . . . . 5 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ ((0..^𝑁) ∪ {𝑁})𝑦 = (𝑋 cyclShift 𝑛)))
13 rexun 4145 . . . . 5 (∃𝑛 ∈ ((0..^𝑁) ∪ {𝑁})𝑦 = (𝑋 cyclShift 𝑛) ↔ (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)))
1412, 13bitrdi 287 . . . 4 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛))))
15 fvex 6841 . . . . . . . . . . . 12 (♯‘𝑋) ∈ V
16 eleq1 2819 . . . . . . . . . . . 12 (𝑁 = (♯‘𝑋) → (𝑁 ∈ V ↔ (♯‘𝑋) ∈ V))
1715, 16mpbiri 258 . . . . . . . . . . 11 (𝑁 = (♯‘𝑋) → 𝑁 ∈ V)
18 oveq2 7360 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑋 cyclShift 𝑛) = (𝑋 cyclShift 𝑁))
1918eqeq2d 2742 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2019rexsng 4628 . . . . . . . . . . 11 (𝑁 ∈ V → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2117, 20syl 17 . . . . . . . . . 10 (𝑁 = (♯‘𝑋) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
22213ad2ant3 1135 . . . . . . . . 9 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2322adantr 480 . . . . . . . 8 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
24 oveq2 7360 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝑋) → (𝑋 cyclShift 𝑁) = (𝑋 cyclShift (♯‘𝑋)))
25243ad2ant3 1135 . . . . . . . . . . . 12 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 𝑁) = (𝑋 cyclShift (♯‘𝑋)))
26 cshwn 14710 . . . . . . . . . . . . 13 (𝑋 ∈ Word 𝑉 → (𝑋 cyclShift (♯‘𝑋)) = 𝑋)
27263ad2ant1 1133 . . . . . . . . . . . 12 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift (♯‘𝑋)) = 𝑋)
2825, 27eqtrd 2766 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 𝑁) = 𝑋)
2928eqeq2d 2742 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑦 = (𝑋 cyclShift 𝑁) ↔ 𝑦 = 𝑋))
3029adantr 480 . . . . . . . . 9 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = (𝑋 cyclShift 𝑁) ↔ 𝑦 = 𝑋))
31 cshw0 14707 . . . . . . . . . . . . . . 15 (𝑋 ∈ Word 𝑉 → (𝑋 cyclShift 0) = 𝑋)
32313ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 0) = 𝑋)
33 lennncl 14447 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
34333adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (♯‘𝑋) ∈ ℕ)
35 eleq1 2819 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑋) → (𝑁 ∈ ℕ ↔ (♯‘𝑋) ∈ ℕ))
36353ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑁 ∈ ℕ ↔ (♯‘𝑋) ∈ ℕ))
3734, 36mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 𝑁 ∈ ℕ)
38 lbfzo0 13605 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
3937, 38sylibr 234 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 0 ∈ (0..^𝑁))
40 oveq2 7360 . . . . . . . . . . . . . . . . . . . 20 (0 = 𝑛 → (𝑋 cyclShift 0) = (𝑋 cyclShift 𝑛))
4140eqeq1d 2733 . . . . . . . . . . . . . . . . . . 19 (0 = 𝑛 → ((𝑋 cyclShift 0) = 𝑋 ↔ (𝑋 cyclShift 𝑛) = 𝑋))
4241eqcoms 2739 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → ((𝑋 cyclShift 0) = 𝑋 ↔ (𝑋 cyclShift 𝑛) = 𝑋))
43 eqcom 2738 . . . . . . . . . . . . . . . . . 18 ((𝑋 cyclShift 𝑛) = 𝑋𝑋 = (𝑋 cyclShift 𝑛))
4442, 43bitrdi 287 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4544adantl 481 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑛 = 0) → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4645biimpd 229 . . . . . . . . . . . . . . 15 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑛 = 0) → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4739, 46rspcimedv 3563 . . . . . . . . . . . . . 14 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → ((𝑋 cyclShift 0) = 𝑋 → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛)))
4832, 47mpd 15 . . . . . . . . . . . . 13 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
4948adantr 480 . . . . . . . . . . . 12 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
5049adantr 480 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
51 eqeq1 2735 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑋 = (𝑋 cyclShift 𝑛)))
5251adantl 481 . . . . . . . . . . . 12 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑋 = (𝑋 cyclShift 𝑛)))
5352rexbidv 3156 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛)))
5450, 53mpbird 257 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛))
5554ex 412 . . . . . . . . 9 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = 𝑋 → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5630, 55sylbid 240 . . . . . . . 8 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = (𝑋 cyclShift 𝑁) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5723, 56sylbid 240 . . . . . . 7 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5857com12 32 . . . . . 6 (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) → (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5958jao1i 858 . . . . 5 ((∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)) → (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6059com12 32 . . . 4 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ((∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6114, 60sylbid 240 . . 3 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
62 fzossfz 13584 . . . 4 (0..^𝑁) ⊆ (0...𝑁)
63 ssrexv 3999 . . . 4 ((0..^𝑁) ⊆ (0...𝑁) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6462, 63mp1i 13 . . 3 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6561, 64impbid 212 . 2 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6665rabbidva 3401 1 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  cun 3895  wss 3897  c0 4282  {csn 4575  cfv 6487  (class class class)co 7352  0cc0 11012  cn 12131  0cn0 12387  cuz 12738  ...cfz 13413  ..^cfzo 13560  chash 14243  Word cword 14426   cyclShift ccsh 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332  df-inf 9333  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-rp 12897  df-fz 13414  df-fzo 13561  df-fl 13702  df-mod 13780  df-hash 14244  df-word 14427  df-concat 14484  df-substr 14555  df-pfx 14585  df-csh 14702
This theorem is referenced by:  hashecclwwlkn1  30064  umgrhashecclwwlk  30065
  Copyright terms: Public domain W3C validator