MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scshwfzeqfzo Structured version   Visualization version   GIF version

Theorem scshwfzeqfzo 14846
Description: For a nonempty word the sets of shifted words, expressd by a finite interval of integers or by a half-open integer range are identical. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
scshwfzeqfzo ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝑁,𝑦   𝑛,𝑉,𝑦   𝑛,𝑋,𝑦

Proof of Theorem scshwfzeqfzo
StepHypRef Expression
1 lencl 14552 . . . . . . . . . . . 12 (𝑋 ∈ Word 𝑉 → (♯‘𝑋) ∈ ℕ0)
2 elnn0uz 12904 . . . . . . . . . . . 12 ((♯‘𝑋) ∈ ℕ0 ↔ (♯‘𝑋) ∈ (ℤ‘0))
31, 2sylib 218 . . . . . . . . . . 11 (𝑋 ∈ Word 𝑉 → (♯‘𝑋) ∈ (ℤ‘0))
43adantr 480 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → (♯‘𝑋) ∈ (ℤ‘0))
5 eleq1 2821 . . . . . . . . . . 11 (𝑁 = (♯‘𝑋) → (𝑁 ∈ (ℤ‘0) ↔ (♯‘𝑋) ∈ (ℤ‘0)))
65adantl 481 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → (𝑁 ∈ (ℤ‘0) ↔ (♯‘𝑋) ∈ (ℤ‘0)))
74, 6mpbird 257 . . . . . . . . 9 ((𝑋 ∈ Word 𝑉𝑁 = (♯‘𝑋)) → 𝑁 ∈ (ℤ‘0))
873adant2 1131 . . . . . . . 8 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 𝑁 ∈ (ℤ‘0))
98adantr 480 . . . . . . 7 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → 𝑁 ∈ (ℤ‘0))
10 fzisfzounsn 13799 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
119, 10syl 17 . . . . . 6 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
1211rexeqdv 3310 . . . . 5 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ ((0..^𝑁) ∪ {𝑁})𝑦 = (𝑋 cyclShift 𝑛)))
13 rexun 4176 . . . . 5 (∃𝑛 ∈ ((0..^𝑁) ∪ {𝑁})𝑦 = (𝑋 cyclShift 𝑛) ↔ (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)))
1412, 13bitrdi 287 . . . 4 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛))))
15 fvex 6898 . . . . . . . . . . . 12 (♯‘𝑋) ∈ V
16 eleq1 2821 . . . . . . . . . . . 12 (𝑁 = (♯‘𝑋) → (𝑁 ∈ V ↔ (♯‘𝑋) ∈ V))
1715, 16mpbiri 258 . . . . . . . . . . 11 (𝑁 = (♯‘𝑋) → 𝑁 ∈ V)
18 oveq2 7420 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑋 cyclShift 𝑛) = (𝑋 cyclShift 𝑁))
1918eqeq2d 2745 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2019rexsng 4656 . . . . . . . . . . 11 (𝑁 ∈ V → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2117, 20syl 17 . . . . . . . . . 10 (𝑁 = (♯‘𝑋) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
22213ad2ant3 1135 . . . . . . . . 9 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
2322adantr 480 . . . . . . . 8 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑦 = (𝑋 cyclShift 𝑁)))
24 oveq2 7420 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝑋) → (𝑋 cyclShift 𝑁) = (𝑋 cyclShift (♯‘𝑋)))
25243ad2ant3 1135 . . . . . . . . . . . 12 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 𝑁) = (𝑋 cyclShift (♯‘𝑋)))
26 cshwn 14816 . . . . . . . . . . . . 13 (𝑋 ∈ Word 𝑉 → (𝑋 cyclShift (♯‘𝑋)) = 𝑋)
27263ad2ant1 1133 . . . . . . . . . . . 12 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift (♯‘𝑋)) = 𝑋)
2825, 27eqtrd 2769 . . . . . . . . . . 11 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 𝑁) = 𝑋)
2928eqeq2d 2745 . . . . . . . . . 10 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑦 = (𝑋 cyclShift 𝑁) ↔ 𝑦 = 𝑋))
3029adantr 480 . . . . . . . . 9 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = (𝑋 cyclShift 𝑁) ↔ 𝑦 = 𝑋))
31 cshw0 14813 . . . . . . . . . . . . . . 15 (𝑋 ∈ Word 𝑉 → (𝑋 cyclShift 0) = 𝑋)
32313ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑋 cyclShift 0) = 𝑋)
33 lennncl 14553 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
34333adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (♯‘𝑋) ∈ ℕ)
35 eleq1 2821 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑋) → (𝑁 ∈ ℕ ↔ (♯‘𝑋) ∈ ℕ))
36353ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → (𝑁 ∈ ℕ ↔ (♯‘𝑋) ∈ ℕ))
3734, 36mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 𝑁 ∈ ℕ)
38 lbfzo0 13720 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
3937, 38sylibr 234 . . . . . . . . . . . . . . 15 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → 0 ∈ (0..^𝑁))
40 oveq2 7420 . . . . . . . . . . . . . . . . . . . 20 (0 = 𝑛 → (𝑋 cyclShift 0) = (𝑋 cyclShift 𝑛))
4140eqeq1d 2736 . . . . . . . . . . . . . . . . . . 19 (0 = 𝑛 → ((𝑋 cyclShift 0) = 𝑋 ↔ (𝑋 cyclShift 𝑛) = 𝑋))
4241eqcoms 2742 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → ((𝑋 cyclShift 0) = 𝑋 ↔ (𝑋 cyclShift 𝑛) = 𝑋))
43 eqcom 2741 . . . . . . . . . . . . . . . . . 18 ((𝑋 cyclShift 𝑛) = 𝑋𝑋 = (𝑋 cyclShift 𝑛))
4442, 43bitrdi 287 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4544adantl 481 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑛 = 0) → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4645biimpd 229 . . . . . . . . . . . . . . 15 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑛 = 0) → ((𝑋 cyclShift 0) = 𝑋𝑋 = (𝑋 cyclShift 𝑛)))
4739, 46rspcimedv 3596 . . . . . . . . . . . . . 14 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → ((𝑋 cyclShift 0) = 𝑋 → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛)))
4832, 47mpd 15 . . . . . . . . . . . . 13 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
4948adantr 480 . . . . . . . . . . . 12 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
5049adantr 480 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛))
51 eqeq1 2738 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑋 = (𝑋 cyclShift 𝑛)))
5251adantl 481 . . . . . . . . . . . 12 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → (𝑦 = (𝑋 cyclShift 𝑛) ↔ 𝑋 = (𝑋 cyclShift 𝑛)))
5352rexbidv 3166 . . . . . . . . . . 11 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^𝑁)𝑋 = (𝑋 cyclShift 𝑛)))
5450, 53mpbird 257 . . . . . . . . . 10 ((((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) ∧ 𝑦 = 𝑋) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛))
5554ex 412 . . . . . . . . 9 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = 𝑋 → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5630, 55sylbid 240 . . . . . . . 8 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (𝑦 = (𝑋 cyclShift 𝑁) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5723, 56sylbid 240 . . . . . . 7 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5857com12 32 . . . . . 6 (∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛) → (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
5958jao1i 858 . . . . 5 ((∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)) → (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6059com12 32 . . . 4 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → ((∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) ∨ ∃𝑛 ∈ {𝑁}𝑦 = (𝑋 cyclShift 𝑛)) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6114, 60sylbid 240 . . 3 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
62 fzossfz 13699 . . . 4 (0..^𝑁) ⊆ (0...𝑁)
63 ssrexv 4033 . . . 4 ((0..^𝑁) ⊆ (0...𝑁) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6462, 63mp1i 13 . . 3 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6561, 64impbid 212 . 2 (((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) ∧ 𝑦 ∈ Word 𝑉) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)))
6665rabbidva 3426 1 ((𝑋 ∈ Word 𝑉𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  Vcvv 3463  cun 3929  wss 3931  c0 4313  {csn 4606  cfv 6540  (class class class)co 7412  0cc0 11136  cn 12247  0cn0 12508  cuz 12859  ...cfz 13528  ..^cfzo 13675  chash 14350  Word cword 14533   cyclShift ccsh 14807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9463  df-inf 9464  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-n0 12509  df-z 12596  df-uz 12860  df-rp 13016  df-fz 13529  df-fzo 13676  df-fl 13813  df-mod 13891  df-hash 14351  df-word 14534  df-concat 14590  df-substr 14660  df-pfx 14690  df-csh 14808
This theorem is referenced by:  hashecclwwlkn1  30023  umgrhashecclwwlk  30024
  Copyright terms: Public domain W3C validator