MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnnn0b Structured version   Visualization version   GIF version

Theorem elnnnn0b 11929
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
elnnnn0b (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))

Proof of Theorem elnnnn0b
StepHypRef Expression
1 nnnn0 11892 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 nngt0 11656 . . 3 (𝑁 ∈ ℕ → 0 < 𝑁)
31, 2jca 515 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
4 elnn0 11887 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
5 breq2 5034 . . . . . 6 (𝑁 = 0 → (0 < 𝑁 ↔ 0 < 0))
6 0re 10632 . . . . . . . 8 0 ∈ ℝ
76ltnri 10738 . . . . . . 7 ¬ 0 < 0
87pm2.21i 119 . . . . . 6 (0 < 0 → 𝑁 ∈ ℕ)
95, 8syl6bi 256 . . . . 5 (𝑁 = 0 → (0 < 𝑁𝑁 ∈ ℕ))
109jao1i 855 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁𝑁 ∈ ℕ))
114, 10sylbi 220 . . 3 (𝑁 ∈ ℕ0 → (0 < 𝑁𝑁 ∈ ℕ))
1211imp 410 . 2 ((𝑁 ∈ ℕ0 ∧ 0 < 𝑁) → 𝑁 ∈ ℕ)
133, 12impbii 212 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111   class class class wbr 5030  0cc0 10526   < clt 10664  cn 11625  0cn0 11885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886
This theorem is referenced by:  elnnnn0c  11930  nn0p1elfzo  13075  bccl2  13679  ccatfv0  13928  ccat2s1fvw  13989  ccat2s1fvwOLD  13990  swrdswrd  14058  cycpmfv2  30806  eulerpartlems  31728  rmxnn  39892  fsumnncl  42213  ioodvbdlimc1lem2  42574  ioodvbdlimc2lem  42576
  Copyright terms: Public domain W3C validator