Proof of Theorem 2lgsoddprmlem3
Step | Hyp | Ref
| Expression |
1 | | lgsdir2lem3 26380 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) → (𝑁 mod 8) ∈ ({1, 7} ∪ {3,
5})) |
2 | | eleq1 2826 |
. . . . 5
⊢ ((𝑁 mod 8) = 𝑅 → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔
𝑅 ∈ ({1, 7} ∪ {3,
5}))) |
3 | 2 | eqcoms 2746 |
. . . 4
⊢ (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔
𝑅 ∈ ({1, 7} ∪ {3,
5}))) |
4 | | elun 4079 |
. . . . . 6
⊢ (𝑅 ∈ ({1, 7} ∪ {3, 5})
↔ (𝑅 ∈ {1, 7}
∨ 𝑅 ∈ {3,
5})) |
5 | | elpri 4580 |
. . . . . . . 8
⊢ (𝑅 ∈ {3, 5} → (𝑅 = 3 ∨ 𝑅 = 5)) |
6 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑅 = 3 → (𝑅↑2) = (3↑2)) |
7 | 6 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑅 = 3 → ((𝑅↑2) − 1) = ((3↑2) −
1)) |
8 | 7 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = (((3↑2)
− 1) / 8)) |
9 | | 2lgsoddprmlem3b 26464 |
. . . . . . . . . . . 12
⊢
(((3↑2) − 1) / 8) = 1 |
10 | 8, 9 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑅 = 3 → (((𝑅↑2) − 1) / 8) =
1) |
11 | 10 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
2 ∥ 1)) |
12 | | n2dvds1 16005 |
. . . . . . . . . . 11
⊢ ¬ 2
∥ 1 |
13 | 12 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (2
∥ 1 → 𝑅 ∈
{1, 7}) |
14 | 11, 13 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) →
𝑅 ∈ {1,
7})) |
15 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑅 = 5 → (𝑅↑2) = (5↑2)) |
16 | 15 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑅 = 5 → ((𝑅↑2) − 1) = ((5↑2) −
1)) |
17 | 16 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑅 = 5 → (((𝑅↑2) − 1) / 8) = (((5↑2)
− 1) / 8)) |
18 | 17 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
2 ∥ (((5↑2) − 1) / 8))) |
19 | | 2lgsoddprmlem3c 26465 |
. . . . . . . . . . . 12
⊢
(((5↑2) − 1) / 8) = 3 |
20 | 19 | breq2i 5078 |
. . . . . . . . . . 11
⊢ (2
∥ (((5↑2) − 1) / 8) ↔ 2 ∥ 3) |
21 | 18, 20 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
2 ∥ 3)) |
22 | | n2dvds3 16008 |
. . . . . . . . . . 11
⊢ ¬ 2
∥ 3 |
23 | 22 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (2
∥ 3 → 𝑅 ∈
{1, 7}) |
24 | 21, 23 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) →
𝑅 ∈ {1,
7})) |
25 | 14, 24 | jaoi 853 |
. . . . . . . 8
⊢ ((𝑅 = 3 ∨ 𝑅 = 5) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1,
7})) |
26 | 5, 25 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ {3, 5} → (2 ∥
(((𝑅↑2) − 1) /
8) → 𝑅 ∈ {1,
7})) |
27 | 26 | jao1i 854 |
. . . . . 6
⊢ ((𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}) → (2
∥ (((𝑅↑2)
− 1) / 8) → 𝑅
∈ {1, 7})) |
28 | 4, 27 | sylbi 216 |
. . . . 5
⊢ (𝑅 ∈ ({1, 7} ∪ {3, 5})
→ (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1,
7})) |
29 | | elpri 4580 |
. . . . . 6
⊢ (𝑅 ∈ {1, 7} → (𝑅 = 1 ∨ 𝑅 = 7)) |
30 | | z0even 16004 |
. . . . . . . 8
⊢ 2 ∥
0 |
31 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑅 = 1 → (𝑅↑2) = (1↑2)) |
32 | 31 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑅 = 1 → ((𝑅↑2) − 1) = ((1↑2) −
1)) |
33 | 32 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = (((1↑2)
− 1) / 8)) |
34 | | 2lgsoddprmlem3a 26463 |
. . . . . . . . 9
⊢
(((1↑2) − 1) / 8) = 0 |
35 | 33, 34 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑅 = 1 → (((𝑅↑2) − 1) / 8) =
0) |
36 | 30, 35 | breqtrrid 5108 |
. . . . . . 7
⊢ (𝑅 = 1 → 2 ∥ (((𝑅↑2) − 1) /
8)) |
37 | | 2z 12282 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
38 | | 3z 12283 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
39 | | dvdsmul1 15915 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 3 ∈ ℤ) → 2 ∥ (2 ·
3)) |
40 | 37, 38, 39 | mp2an 688 |
. . . . . . . 8
⊢ 2 ∥
(2 · 3) |
41 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑅 = 7 → (𝑅↑2) = (7↑2)) |
42 | 41 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑅 = 7 → ((𝑅↑2) − 1) = ((7↑2) −
1)) |
43 | 42 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (((7↑2)
− 1) / 8)) |
44 | | 2lgsoddprmlem3d 26466 |
. . . . . . . . 9
⊢
(((7↑2) − 1) / 8) = (2 · 3) |
45 | 43, 44 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (2 ·
3)) |
46 | 40, 45 | breqtrrid 5108 |
. . . . . . 7
⊢ (𝑅 = 7 → 2 ∥ (((𝑅↑2) − 1) /
8)) |
47 | 36, 46 | jaoi 853 |
. . . . . 6
⊢ ((𝑅 = 1 ∨ 𝑅 = 7) → 2 ∥ (((𝑅↑2) − 1) / 8)) |
48 | 29, 47 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ {1, 7} → 2 ∥
(((𝑅↑2) − 1) /
8)) |
49 | 28, 48 | impbid1 224 |
. . . 4
⊢ (𝑅 ∈ ({1, 7} ∪ {3, 5})
→ (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1,
7})) |
50 | 3, 49 | syl6bi 252 |
. . 3
⊢ (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) →
(2 ∥ (((𝑅↑2)
− 1) / 8) ↔ 𝑅
∈ {1, 7}))) |
51 | 1, 50 | syl5com 31 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) → (𝑅 = (𝑁 mod 8) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
𝑅 ∈ {1,
7}))) |
52 | 51 | 3impia 1115 |
1
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
𝑅 ∈ {1,
7})) |