Proof of Theorem 2lgsoddprmlem3
| Step | Hyp | Ref
| Expression |
| 1 | | lgsdir2lem3 27295 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) → (𝑁 mod 8) ∈ ({1, 7} ∪ {3,
5})) |
| 2 | | eleq1 2823 |
. . . . 5
⊢ ((𝑁 mod 8) = 𝑅 → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔
𝑅 ∈ ({1, 7} ∪ {3,
5}))) |
| 3 | 2 | eqcoms 2744 |
. . . 4
⊢ (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔
𝑅 ∈ ({1, 7} ∪ {3,
5}))) |
| 4 | | elun 4133 |
. . . . . 6
⊢ (𝑅 ∈ ({1, 7} ∪ {3, 5})
↔ (𝑅 ∈ {1, 7}
∨ 𝑅 ∈ {3,
5})) |
| 5 | | elpri 4630 |
. . . . . . . 8
⊢ (𝑅 ∈ {3, 5} → (𝑅 = 3 ∨ 𝑅 = 5)) |
| 6 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑅 = 3 → (𝑅↑2) = (3↑2)) |
| 7 | 6 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝑅 = 3 → ((𝑅↑2) − 1) = ((3↑2) −
1)) |
| 8 | 7 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = (((3↑2)
− 1) / 8)) |
| 9 | | 2lgsoddprmlem3b 27379 |
. . . . . . . . . . . 12
⊢
(((3↑2) − 1) / 8) = 1 |
| 10 | 8, 9 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (𝑅 = 3 → (((𝑅↑2) − 1) / 8) =
1) |
| 11 | 10 | breq2d 5136 |
. . . . . . . . . 10
⊢ (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
2 ∥ 1)) |
| 12 | | n2dvds1 16392 |
. . . . . . . . . . 11
⊢ ¬ 2
∥ 1 |
| 13 | 12 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (2
∥ 1 → 𝑅 ∈
{1, 7}) |
| 14 | 11, 13 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) →
𝑅 ∈ {1,
7})) |
| 15 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑅 = 5 → (𝑅↑2) = (5↑2)) |
| 16 | 15 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝑅 = 5 → ((𝑅↑2) − 1) = ((5↑2) −
1)) |
| 17 | 16 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ (𝑅 = 5 → (((𝑅↑2) − 1) / 8) = (((5↑2)
− 1) / 8)) |
| 18 | 17 | breq2d 5136 |
. . . . . . . . . . 11
⊢ (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
2 ∥ (((5↑2) − 1) / 8))) |
| 19 | | 2lgsoddprmlem3c 27380 |
. . . . . . . . . . . 12
⊢
(((5↑2) − 1) / 8) = 3 |
| 20 | 19 | breq2i 5132 |
. . . . . . . . . . 11
⊢ (2
∥ (((5↑2) − 1) / 8) ↔ 2 ∥ 3) |
| 21 | 18, 20 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
2 ∥ 3)) |
| 22 | | n2dvds3 16395 |
. . . . . . . . . . 11
⊢ ¬ 2
∥ 3 |
| 23 | 22 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (2
∥ 3 → 𝑅 ∈
{1, 7}) |
| 24 | 21, 23 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) →
𝑅 ∈ {1,
7})) |
| 25 | 14, 24 | jaoi 857 |
. . . . . . . 8
⊢ ((𝑅 = 3 ∨ 𝑅 = 5) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1,
7})) |
| 26 | 5, 25 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ {3, 5} → (2 ∥
(((𝑅↑2) − 1) /
8) → 𝑅 ∈ {1,
7})) |
| 27 | 26 | jao1i 858 |
. . . . . 6
⊢ ((𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}) → (2
∥ (((𝑅↑2)
− 1) / 8) → 𝑅
∈ {1, 7})) |
| 28 | 4, 27 | sylbi 217 |
. . . . 5
⊢ (𝑅 ∈ ({1, 7} ∪ {3, 5})
→ (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1,
7})) |
| 29 | | elpri 4630 |
. . . . . 6
⊢ (𝑅 ∈ {1, 7} → (𝑅 = 1 ∨ 𝑅 = 7)) |
| 30 | | z0even 16391 |
. . . . . . . 8
⊢ 2 ∥
0 |
| 31 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑅 = 1 → (𝑅↑2) = (1↑2)) |
| 32 | 31 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝑅 = 1 → ((𝑅↑2) − 1) = ((1↑2) −
1)) |
| 33 | 32 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = (((1↑2)
− 1) / 8)) |
| 34 | | 2lgsoddprmlem3a 27378 |
. . . . . . . . 9
⊢
(((1↑2) − 1) / 8) = 0 |
| 35 | 33, 34 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝑅 = 1 → (((𝑅↑2) − 1) / 8) =
0) |
| 36 | 30, 35 | breqtrrid 5162 |
. . . . . . 7
⊢ (𝑅 = 1 → 2 ∥ (((𝑅↑2) − 1) /
8)) |
| 37 | | 2z 12629 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 38 | | 3z 12630 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
| 39 | | dvdsmul1 16302 |
. . . . . . . . 9
⊢ ((2
∈ ℤ ∧ 3 ∈ ℤ) → 2 ∥ (2 ·
3)) |
| 40 | 37, 38, 39 | mp2an 692 |
. . . . . . . 8
⊢ 2 ∥
(2 · 3) |
| 41 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑅 = 7 → (𝑅↑2) = (7↑2)) |
| 42 | 41 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝑅 = 7 → ((𝑅↑2) − 1) = ((7↑2) −
1)) |
| 43 | 42 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (((7↑2)
− 1) / 8)) |
| 44 | | 2lgsoddprmlem3d 27381 |
. . . . . . . . 9
⊢
(((7↑2) − 1) / 8) = (2 · 3) |
| 45 | 43, 44 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (2 ·
3)) |
| 46 | 40, 45 | breqtrrid 5162 |
. . . . . . 7
⊢ (𝑅 = 7 → 2 ∥ (((𝑅↑2) − 1) /
8)) |
| 47 | 36, 46 | jaoi 857 |
. . . . . 6
⊢ ((𝑅 = 1 ∨ 𝑅 = 7) → 2 ∥ (((𝑅↑2) − 1) / 8)) |
| 48 | 29, 47 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ {1, 7} → 2 ∥
(((𝑅↑2) − 1) /
8)) |
| 49 | 28, 48 | impbid1 225 |
. . . 4
⊢ (𝑅 ∈ ({1, 7} ∪ {3, 5})
→ (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1,
7})) |
| 50 | 3, 49 | biimtrdi 253 |
. . 3
⊢ (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) →
(2 ∥ (((𝑅↑2)
− 1) / 8) ↔ 𝑅
∈ {1, 7}))) |
| 51 | 1, 50 | syl5com 31 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁) → (𝑅 = (𝑁 mod 8) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
𝑅 ∈ {1,
7}))) |
| 52 | 51 | 3impia 1117 |
1
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2
∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔
𝑅 ∈ {1,
7})) |