MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprmlem3 Structured version   Visualization version   GIF version

Theorem 2lgsoddprmlem3 25591
Description: Lemma 3 for 2lgsoddprm 25593. (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))

Proof of Theorem 2lgsoddprmlem3
StepHypRef Expression
1 lgsdir2lem3 25504 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}))
2 eleq1 2847 . . . . 5 ((𝑁 mod 8) = 𝑅 → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
32eqcoms 2786 . . . 4 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ 𝑅 ∈ ({1, 7} ∪ {3, 5})))
4 elun 3976 . . . . . 6 (𝑅 ∈ ({1, 7} ∪ {3, 5}) ↔ (𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}))
5 elpri 4420 . . . . . . . 8 (𝑅 ∈ {3, 5} → (𝑅 = 3 ∨ 𝑅 = 5))
6 oveq1 6929 . . . . . . . . . . . . . 14 (𝑅 = 3 → (𝑅↑2) = (3↑2))
76oveq1d 6937 . . . . . . . . . . . . 13 (𝑅 = 3 → ((𝑅↑2) − 1) = ((3↑2) − 1))
87oveq1d 6937 . . . . . . . . . . . 12 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = (((3↑2) − 1) / 8))
9 2lgsoddprmlem3b 25588 . . . . . . . . . . . 12 (((3↑2) − 1) / 8) = 1
108, 9syl6eq 2830 . . . . . . . . . . 11 (𝑅 = 3 → (((𝑅↑2) − 1) / 8) = 1)
1110breq2d 4898 . . . . . . . . . 10 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 1))
12 n2dvds1 15496 . . . . . . . . . . 11 ¬ 2 ∥ 1
1312pm2.21i 117 . . . . . . . . . 10 (2 ∥ 1 → 𝑅 ∈ {1, 7})
1411, 13syl6bi 245 . . . . . . . . 9 (𝑅 = 3 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
15 oveq1 6929 . . . . . . . . . . . . . 14 (𝑅 = 5 → (𝑅↑2) = (5↑2))
1615oveq1d 6937 . . . . . . . . . . . . 13 (𝑅 = 5 → ((𝑅↑2) − 1) = ((5↑2) − 1))
1716oveq1d 6937 . . . . . . . . . . . 12 (𝑅 = 5 → (((𝑅↑2) − 1) / 8) = (((5↑2) − 1) / 8))
1817breq2d 4898 . . . . . . . . . . 11 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((5↑2) − 1) / 8)))
19 2lgsoddprmlem3c 25589 . . . . . . . . . . . 12 (((5↑2) − 1) / 8) = 3
2019breq2i 4894 . . . . . . . . . . 11 (2 ∥ (((5↑2) − 1) / 8) ↔ 2 ∥ 3)
2118, 20syl6bb 279 . . . . . . . . . 10 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ 3))
22 n2dvds3 15500 . . . . . . . . . . 11 ¬ 2 ∥ 3
2322pm2.21i 117 . . . . . . . . . 10 (2 ∥ 3 → 𝑅 ∈ {1, 7})
2421, 23syl6bi 245 . . . . . . . . 9 (𝑅 = 5 → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2514, 24jaoi 846 . . . . . . . 8 ((𝑅 = 3 ∨ 𝑅 = 5) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
265, 25syl 17 . . . . . . 7 (𝑅 ∈ {3, 5} → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
2726jao1i 847 . . . . . 6 ((𝑅 ∈ {1, 7} ∨ 𝑅 ∈ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
284, 27sylbi 209 . . . . 5 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) → 𝑅 ∈ {1, 7}))
29 elpri 4420 . . . . . 6 (𝑅 ∈ {1, 7} → (𝑅 = 1 ∨ 𝑅 = 7))
30 z0even 15495 . . . . . . . 8 2 ∥ 0
31 oveq1 6929 . . . . . . . . . . 11 (𝑅 = 1 → (𝑅↑2) = (1↑2))
3231oveq1d 6937 . . . . . . . . . 10 (𝑅 = 1 → ((𝑅↑2) − 1) = ((1↑2) − 1))
3332oveq1d 6937 . . . . . . . . 9 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = (((1↑2) − 1) / 8))
34 2lgsoddprmlem3a 25587 . . . . . . . . 9 (((1↑2) − 1) / 8) = 0
3533, 34syl6eq 2830 . . . . . . . 8 (𝑅 = 1 → (((𝑅↑2) − 1) / 8) = 0)
3630, 35syl5breqr 4924 . . . . . . 7 (𝑅 = 1 → 2 ∥ (((𝑅↑2) − 1) / 8))
37 2z 11761 . . . . . . . . 9 2 ∈ ℤ
38 3z 11762 . . . . . . . . 9 3 ∈ ℤ
39 dvdsmul1 15410 . . . . . . . . 9 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → 2 ∥ (2 · 3))
4037, 38, 39mp2an 682 . . . . . . . 8 2 ∥ (2 · 3)
41 oveq1 6929 . . . . . . . . . . 11 (𝑅 = 7 → (𝑅↑2) = (7↑2))
4241oveq1d 6937 . . . . . . . . . 10 (𝑅 = 7 → ((𝑅↑2) − 1) = ((7↑2) − 1))
4342oveq1d 6937 . . . . . . . . 9 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (((7↑2) − 1) / 8))
44 2lgsoddprmlem3d 25590 . . . . . . . . 9 (((7↑2) − 1) / 8) = (2 · 3)
4543, 44syl6eq 2830 . . . . . . . 8 (𝑅 = 7 → (((𝑅↑2) − 1) / 8) = (2 · 3))
4640, 45syl5breqr 4924 . . . . . . 7 (𝑅 = 7 → 2 ∥ (((𝑅↑2) − 1) / 8))
4736, 46jaoi 846 . . . . . 6 ((𝑅 = 1 ∨ 𝑅 = 7) → 2 ∥ (((𝑅↑2) − 1) / 8))
4829, 47syl 17 . . . . 5 (𝑅 ∈ {1, 7} → 2 ∥ (((𝑅↑2) − 1) / 8))
4928, 48impbid1 217 . . . 4 (𝑅 ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
503, 49syl6bi 245 . . 3 (𝑅 = (𝑁 mod 8) → ((𝑁 mod 8) ∈ ({1, 7} ∪ {3, 5}) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
511, 50syl5com 31 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑅 = (𝑁 mod 8) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})))
52513impia 1106 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  cun 3790  {cpr 4400   class class class wbr 4886  (class class class)co 6922  0cc0 10272  1c1 10273   · cmul 10277  cmin 10606   / cdiv 11032  2c2 11430  3c3 11431  5c5 11433  7c7 11435  8c8 11436  cz 11728   mod cmo 12987  cexp 13178  cdvds 15387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-dvds 15388
This theorem is referenced by:  2lgsoddprmlem4  25592
  Copyright terms: Public domain W3C validator