Proof of Theorem sorpssint
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | intss1 4962 | . . . . . 6
⊢ (𝑢 ∈ 𝑌 → ∩ 𝑌 ⊆ 𝑢) | 
| 2 | 1 | 3ad2ant2 1134 | . . . . 5
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢) → ∩ 𝑌 ⊆ 𝑢) | 
| 3 |  | sorpssi 7750 | . . . . . . . . . 10
⊢ ((
[⊊] Or 𝑌
∧ (𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌)) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) | 
| 4 | 3 | anassrs 467 | . . . . . . . . 9
⊢ (((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌) ∧ 𝑣 ∈ 𝑌) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) | 
| 5 |  | sspss 4101 | . . . . . . . . . . 11
⊢ (𝑣 ⊆ 𝑢 ↔ (𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢)) | 
| 6 |  | orel1 888 | . . . . . . . . . . . 12
⊢ (¬
𝑣 ⊊ 𝑢 → ((𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢) → 𝑣 = 𝑢)) | 
| 7 |  | eqimss2 4042 | . . . . . . . . . . . 12
⊢ (𝑣 = 𝑢 → 𝑢 ⊆ 𝑣) | 
| 8 | 6, 7 | syl6com 37 | . . . . . . . . . . 11
⊢ ((𝑣 ⊊ 𝑢 ∨ 𝑣 = 𝑢) → (¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣)) | 
| 9 | 5, 8 | sylbi 217 | . . . . . . . . . 10
⊢ (𝑣 ⊆ 𝑢 → (¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣)) | 
| 10 | 9 | jao1i 858 | . . . . . . . . 9
⊢ ((𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) → (¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣)) | 
| 11 | 4, 10 | syl 17 | . . . . . . . 8
⊢ (((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌) ∧ 𝑣 ∈ 𝑌) → (¬ 𝑣 ⊊ 𝑢 → 𝑢 ⊆ 𝑣)) | 
| 12 | 11 | ralimdva 3166 | . . . . . . 7
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌) → (∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 → ∀𝑣 ∈ 𝑌 𝑢 ⊆ 𝑣)) | 
| 13 | 12 | 3impia 1117 | . . . . . 6
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢) → ∀𝑣 ∈ 𝑌 𝑢 ⊆ 𝑣) | 
| 14 |  | ssint 4963 | . . . . . 6
⊢ (𝑢 ⊆ ∩ 𝑌
↔ ∀𝑣 ∈
𝑌 𝑢 ⊆ 𝑣) | 
| 15 | 13, 14 | sylibr 234 | . . . . 5
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢) → 𝑢 ⊆ ∩ 𝑌) | 
| 16 | 2, 15 | eqssd 4000 | . . . 4
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢) → ∩ 𝑌 = 𝑢) | 
| 17 |  | simp2 1137 | . . . 4
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢) → 𝑢 ∈ 𝑌) | 
| 18 | 16, 17 | eqeltrd 2840 | . . 3
⊢ ((
[⊊] Or 𝑌
∧ 𝑢 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢) → ∩ 𝑌 ∈ 𝑌) | 
| 19 | 18 | rexlimdv3a 3158 | . 2
⊢ (
[⊊] Or 𝑌
→ (∃𝑢 ∈
𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 → ∩ 𝑌 ∈ 𝑌)) | 
| 20 |  | intss1 4962 | . . . . 5
⊢ (𝑣 ∈ 𝑌 → ∩ 𝑌 ⊆ 𝑣) | 
| 21 |  | ssnpss 4105 | . . . . 5
⊢ (∩ 𝑌
⊆ 𝑣 → ¬
𝑣 ⊊ ∩ 𝑌) | 
| 22 | 20, 21 | syl 17 | . . . 4
⊢ (𝑣 ∈ 𝑌 → ¬ 𝑣 ⊊ ∩ 𝑌) | 
| 23 | 22 | rgen 3062 | . . 3
⊢
∀𝑣 ∈
𝑌 ¬ 𝑣 ⊊ ∩ 𝑌 | 
| 24 |  | psseq2 4090 | . . . . . 6
⊢ (𝑢 = ∩
𝑌 → (𝑣 ⊊ 𝑢 ↔ 𝑣 ⊊ ∩ 𝑌)) | 
| 25 | 24 | notbid 318 | . . . . 5
⊢ (𝑢 = ∩
𝑌 → (¬ 𝑣 ⊊ 𝑢 ↔ ¬ 𝑣 ⊊ ∩ 𝑌)) | 
| 26 | 25 | ralbidv 3177 | . . . 4
⊢ (𝑢 = ∩
𝑌 → (∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ ∩ 𝑌)) | 
| 27 | 26 | rspcev 3621 | . . 3
⊢ ((∩ 𝑌
∈ 𝑌 ∧
∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ ∩ 𝑌) → ∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢) | 
| 28 | 23, 27 | mpan2 691 | . 2
⊢ (∩ 𝑌
∈ 𝑌 →
∃𝑢 ∈ 𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢) | 
| 29 | 19, 28 | impbid1 225 | 1
⊢ (
[⊊] Or 𝑌
→ (∃𝑢 ∈
𝑌 ∀𝑣 ∈ 𝑌 ¬ 𝑣 ⊊ 𝑢 ↔ ∩ 𝑌 ∈ 𝑌)) |