MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssint Structured version   Visualization version   GIF version

Theorem sorpssint 7564
Description: In a chain of sets, a minimal element is the intersection of the chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssint ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌))
Distinct variable group:   𝑢,𝑌,𝑣

Proof of Theorem sorpssint
StepHypRef Expression
1 intss1 4891 . . . . . 6 (𝑢𝑌 𝑌𝑢)
213ad2ant2 1132 . . . . 5 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑌𝑢)
3 sorpssi 7560 . . . . . . . . . 10 (( [] Or 𝑌 ∧ (𝑢𝑌𝑣𝑌)) → (𝑢𝑣𝑣𝑢))
43anassrs 467 . . . . . . . . 9 ((( [] Or 𝑌𝑢𝑌) ∧ 𝑣𝑌) → (𝑢𝑣𝑣𝑢))
5 sspss 4030 . . . . . . . . . . 11 (𝑣𝑢 ↔ (𝑣𝑢𝑣 = 𝑢))
6 orel1 885 . . . . . . . . . . . 12 𝑣𝑢 → ((𝑣𝑢𝑣 = 𝑢) → 𝑣 = 𝑢))
7 eqimss2 3974 . . . . . . . . . . . 12 (𝑣 = 𝑢𝑢𝑣)
86, 7syl6com 37 . . . . . . . . . . 11 ((𝑣𝑢𝑣 = 𝑢) → (¬ 𝑣𝑢𝑢𝑣))
95, 8sylbi 216 . . . . . . . . . 10 (𝑣𝑢 → (¬ 𝑣𝑢𝑢𝑣))
109jao1i 854 . . . . . . . . 9 ((𝑢𝑣𝑣𝑢) → (¬ 𝑣𝑢𝑢𝑣))
114, 10syl 17 . . . . . . . 8 ((( [] Or 𝑌𝑢𝑌) ∧ 𝑣𝑌) → (¬ 𝑣𝑢𝑢𝑣))
1211ralimdva 3102 . . . . . . 7 (( [] Or 𝑌𝑢𝑌) → (∀𝑣𝑌 ¬ 𝑣𝑢 → ∀𝑣𝑌 𝑢𝑣))
13123impia 1115 . . . . . 6 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → ∀𝑣𝑌 𝑢𝑣)
14 ssint 4892 . . . . . 6 (𝑢 𝑌 ↔ ∀𝑣𝑌 𝑢𝑣)
1513, 14sylibr 233 . . . . 5 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑢 𝑌)
162, 15eqssd 3934 . . . 4 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑌 = 𝑢)
17 simp2 1135 . . . 4 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑢𝑌)
1816, 17eqeltrd 2839 . . 3 (( [] Or 𝑌𝑢𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣𝑢) → 𝑌𝑌)
1918rexlimdv3a 3214 . 2 ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌))
20 intss1 4891 . . . . 5 (𝑣𝑌 𝑌𝑣)
21 ssnpss 4034 . . . . 5 ( 𝑌𝑣 → ¬ 𝑣 𝑌)
2220, 21syl 17 . . . 4 (𝑣𝑌 → ¬ 𝑣 𝑌)
2322rgen 3073 . . 3 𝑣𝑌 ¬ 𝑣 𝑌
24 psseq2 4019 . . . . . 6 (𝑢 = 𝑌 → (𝑣𝑢𝑣 𝑌))
2524notbid 317 . . . . 5 (𝑢 = 𝑌 → (¬ 𝑣𝑢 ↔ ¬ 𝑣 𝑌))
2625ralbidv 3120 . . . 4 (𝑢 = 𝑌 → (∀𝑣𝑌 ¬ 𝑣𝑢 ↔ ∀𝑣𝑌 ¬ 𝑣 𝑌))
2726rspcev 3552 . . 3 (( 𝑌𝑌 ∧ ∀𝑣𝑌 ¬ 𝑣 𝑌) → ∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢)
2823, 27mpan2 687 . 2 ( 𝑌𝑌 → ∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢)
2919, 28impbid1 224 1 ( [] Or 𝑌 → (∃𝑢𝑌𝑣𝑌 ¬ 𝑣𝑢 𝑌𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  wpss 3884   cint 4876   Or wor 5493   [] crpss 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-int 4877  df-br 5071  df-opab 5133  df-so 5495  df-xp 5586  df-rel 5587  df-rpss 7554
This theorem is referenced by:  fin2i2  10005  isfin2-2  10006
  Copyright terms: Public domain W3C validator