MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltlen Structured version   Visualization version   GIF version

Theorem ltlen 11311
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.)
Assertion
Ref Expression
ltlen ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem ltlen
StepHypRef Expression
1 ltle 11298 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
2 ltne 11307 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
32ex 413 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
43adantr 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐵𝐴))
51, 4jcad 513 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴𝐵𝐵𝐴)))
6 leloe 11296 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
7 df-ne 2941 . . . . . 6 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
8 pm2.24 124 . . . . . . 7 (𝐵 = 𝐴 → (¬ 𝐵 = 𝐴𝐴 < 𝐵))
98eqcoms 2740 . . . . . 6 (𝐴 = 𝐵 → (¬ 𝐵 = 𝐴𝐴 < 𝐵))
107, 9biimtrid 241 . . . . 5 (𝐴 = 𝐵 → (𝐵𝐴𝐴 < 𝐵))
1110jao1i 856 . . . 4 ((𝐴 < 𝐵𝐴 = 𝐵) → (𝐵𝐴𝐴 < 𝐵))
126, 11syl6bi 252 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐵𝐴𝐴 < 𝐵)))
1312impd 411 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) → 𝐴 < 𝐵))
145, 13impbid 211 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  cr 11105   < clt 11244  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250
This theorem is referenced by:  ltleni  11328  ltlend  11355  nn0lt2  12621  rpneg  13002  fzofzim  13675  elfznelfzob  13734  hashsdom  14337  cnpart  15183  oddprmgt2  16632  chfacfisf  22347  chfacfisfcpmat  22348  ang180lem2  26304  mumullem2  26673  lgsneg  26813  lgsdilem  26816  lgsdirprm  26823  2sqreultlem  26939  2sqreunnltlem  26942  axlowdimlem16  28204  unitdivcld  32869  zltp1ne  34087  poimirlem24  36500  itg2addnclem  36527  fzopredsuc  46017  iccpartiltu  46076  icceuelpartlem  46089  difmodm1lt  47161
  Copyright terms: Public domain W3C validator