MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltlen Structured version   Visualization version   GIF version

Theorem ltlen 11359
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.)
Assertion
Ref Expression
ltlen ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem ltlen
StepHypRef Expression
1 ltle 11346 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
2 ltne 11355 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
32ex 412 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
43adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐵𝐴))
51, 4jcad 512 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴𝐵𝐵𝐴)))
6 leloe 11344 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
7 df-ne 2938 . . . . . 6 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
8 pm2.24 124 . . . . . . 7 (𝐵 = 𝐴 → (¬ 𝐵 = 𝐴𝐴 < 𝐵))
98eqcoms 2742 . . . . . 6 (𝐴 = 𝐵 → (¬ 𝐵 = 𝐴𝐴 < 𝐵))
107, 9biimtrid 242 . . . . 5 (𝐴 = 𝐵 → (𝐵𝐴𝐴 < 𝐵))
1110jao1i 858 . . . 4 ((𝐴 < 𝐵𝐴 = 𝐵) → (𝐵𝐴𝐴 < 𝐵))
126, 11biimtrdi 253 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐵𝐴𝐴 < 𝐵)))
1312impd 410 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) → 𝐴 < 𝐵))
145, 13impbid 212 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cr 11151   < clt 11292  cle 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-pre-lttri 11226  ax-pre-lttrn 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298
This theorem is referenced by:  ltleni  11376  ltlend  11403  nn0lt2  12678  rpneg  13064  fzofzim  13745  elfznelfzob  13808  hashsdom  14416  cnpart  15275  oddprmgt2  16732  chfacfisf  22875  chfacfisfcpmat  22876  ang180lem2  26867  mumullem2  27237  lgsneg  27379  lgsdilem  27382  lgsdirprm  27389  2sqreultlem  27505  2sqreunnltlem  27508  axlowdimlem16  28986  unitdivcld  33861  zltp1ne  35093  poimirlem24  37630  itg2addnclem  37657  fzopredsuc  47272  iccpartiltu  47346  icceuelpartlem  47359  difmodm1lt  48371
  Copyright terms: Public domain W3C validator