| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltlen | Structured version Visualization version GIF version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.) |
| Ref | Expression |
|---|---|
| ltlen | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltle 11204 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 2 | ltne 11213 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
| 5 | 1, 4 | jcad 512 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| 6 | leloe 11202 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
| 7 | df-ne 2926 | . . . . . 6 ⊢ (𝐵 ≠ 𝐴 ↔ ¬ 𝐵 = 𝐴) | |
| 8 | pm2.24 124 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (¬ 𝐵 = 𝐴 → 𝐴 < 𝐵)) | |
| 9 | 8 | eqcoms 2737 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 = 𝐴 → 𝐴 < 𝐵)) |
| 10 | 7, 9 | biimtrid 242 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵)) |
| 11 | 10 | jao1i 858 | . . . 4 ⊢ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵)) |
| 12 | 6, 11 | biimtrdi 253 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵))) |
| 13 | 12 | impd 410 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴) → 𝐴 < 𝐵)) |
| 14 | 5, 13 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ℝcr 11008 < clt 11149 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: ltleni 11234 ltlend 11261 nn0lt2 12539 rpneg 12927 fzofzim 13612 elfznelfzob 13676 hashsdom 14288 cnpart 15147 oddprmgt2 16610 chfacfisf 22739 chfacfisfcpmat 22740 ang180lem2 26718 mumullem2 27088 lgsneg 27230 lgsdilem 27233 lgsdirprm 27240 2sqreultlem 27356 2sqreunnltlem 27359 axlowdimlem16 28902 unitdivcld 33868 zltp1ne 35083 poimirlem24 37624 itg2addnclem 37651 fzopredsuc 47307 iccpartiltu 47406 icceuelpartlem 47419 |
| Copyright terms: Public domain | W3C validator |