MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltlen Structured version   Visualization version   GIF version

Theorem ltlen 11251
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.)
Assertion
Ref Expression
ltlen ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem ltlen
StepHypRef Expression
1 ltle 11238 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
2 ltne 11247 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
32ex 412 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
43adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐵𝐴))
51, 4jcad 512 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴𝐵𝐵𝐴)))
6 leloe 11236 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
7 df-ne 2926 . . . . . 6 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
8 pm2.24 124 . . . . . . 7 (𝐵 = 𝐴 → (¬ 𝐵 = 𝐴𝐴 < 𝐵))
98eqcoms 2737 . . . . . 6 (𝐴 = 𝐵 → (¬ 𝐵 = 𝐴𝐴 < 𝐵))
107, 9biimtrid 242 . . . . 5 (𝐴 = 𝐵 → (𝐵𝐴𝐴 < 𝐵))
1110jao1i 858 . . . 4 ((𝐴 < 𝐵𝐴 = 𝐵) → (𝐵𝐴𝐴 < 𝐵))
126, 11biimtrdi 253 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐵𝐴𝐴 < 𝐵)))
1312impd 410 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) → 𝐴 < 𝐵))
145, 13impbid 212 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cr 11043   < clt 11184  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190
This theorem is referenced by:  ltleni  11268  ltlend  11295  nn0lt2  12573  rpneg  12961  fzofzim  13646  elfznelfzob  13710  hashsdom  14322  cnpart  15182  oddprmgt2  16645  chfacfisf  22717  chfacfisfcpmat  22718  ang180lem2  26696  mumullem2  27066  lgsneg  27208  lgsdilem  27211  lgsdirprm  27218  2sqreultlem  27334  2sqreunnltlem  27337  axlowdimlem16  28860  unitdivcld  33864  zltp1ne  35070  poimirlem24  37611  itg2addnclem  37638  fzopredsuc  47297  iccpartiltu  47396  icceuelpartlem  47409
  Copyright terms: Public domain W3C validator