MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltlen Structured version   Visualization version   GIF version

Theorem ltlen 11282
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.)
Assertion
Ref Expression
ltlen ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem ltlen
StepHypRef Expression
1 ltle 11269 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
2 ltne 11278 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
32ex 412 . . . 4 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
43adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐵𝐴))
51, 4jcad 512 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴𝐵𝐵𝐴)))
6 leloe 11267 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
7 df-ne 2927 . . . . . 6 (𝐵𝐴 ↔ ¬ 𝐵 = 𝐴)
8 pm2.24 124 . . . . . . 7 (𝐵 = 𝐴 → (¬ 𝐵 = 𝐴𝐴 < 𝐵))
98eqcoms 2738 . . . . . 6 (𝐴 = 𝐵 → (¬ 𝐵 = 𝐴𝐴 < 𝐵))
107, 9biimtrid 242 . . . . 5 (𝐴 = 𝐵 → (𝐵𝐴𝐴 < 𝐵))
1110jao1i 858 . . . 4 ((𝐴 < 𝐵𝐴 = 𝐵) → (𝐵𝐴𝐴 < 𝐵))
126, 11biimtrdi 253 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → (𝐵𝐴𝐴 < 𝐵)))
1312impd 410 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) → 𝐴 < 𝐵))
145, 13impbid 212 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cr 11074   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221
This theorem is referenced by:  ltleni  11299  ltlend  11326  nn0lt2  12604  rpneg  12992  fzofzim  13677  elfznelfzob  13741  hashsdom  14353  cnpart  15213  oddprmgt2  16676  chfacfisf  22748  chfacfisfcpmat  22749  ang180lem2  26727  mumullem2  27097  lgsneg  27239  lgsdilem  27242  lgsdirprm  27249  2sqreultlem  27365  2sqreunnltlem  27368  axlowdimlem16  28891  unitdivcld  33898  zltp1ne  35104  poimirlem24  37645  itg2addnclem  37672  fzopredsuc  47328  iccpartiltu  47427  icceuelpartlem  47440
  Copyright terms: Public domain W3C validator