![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltlen | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.) |
Ref | Expression |
---|---|
ltlen | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltle 11302 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
2 | ltne 11311 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
3 | 2 | ex 414 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
4 | 3 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
5 | 1, 4 | jcad 514 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
6 | leloe 11300 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
7 | df-ne 2942 | . . . . . 6 ⊢ (𝐵 ≠ 𝐴 ↔ ¬ 𝐵 = 𝐴) | |
8 | pm2.24 124 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (¬ 𝐵 = 𝐴 → 𝐴 < 𝐵)) | |
9 | 8 | eqcoms 2741 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 = 𝐴 → 𝐴 < 𝐵)) |
10 | 7, 9 | biimtrid 241 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵)) |
11 | 10 | jao1i 857 | . . . 4 ⊢ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵)) |
12 | 6, 11 | syl6bi 253 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵))) |
13 | 12 | impd 412 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴) → 𝐴 < 𝐵)) |
14 | 5, 13 | impbid 211 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5149 ℝcr 11109 < clt 11248 ≤ cle 11249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 |
This theorem is referenced by: ltleni 11332 ltlend 11359 nn0lt2 12625 rpneg 13006 fzofzim 13679 elfznelfzob 13738 hashsdom 14341 cnpart 15187 oddprmgt2 16636 chfacfisf 22356 chfacfisfcpmat 22357 ang180lem2 26315 mumullem2 26684 lgsneg 26824 lgsdilem 26827 lgsdirprm 26834 2sqreultlem 26950 2sqreunnltlem 26953 axlowdimlem16 28215 unitdivcld 32881 zltp1ne 34099 poimirlem24 36512 itg2addnclem 36539 fzopredsuc 46031 iccpartiltu 46090 icceuelpartlem 46103 difmodm1lt 47208 |
Copyright terms: Public domain | W3C validator |