![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltlen | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.) |
Ref | Expression |
---|---|
ltlen | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltle 11248 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
2 | ltne 11257 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | |
3 | 2 | ex 414 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
4 | 3 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
5 | 1, 4 | jcad 514 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
6 | leloe 11246 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
7 | df-ne 2941 | . . . . . 6 ⊢ (𝐵 ≠ 𝐴 ↔ ¬ 𝐵 = 𝐴) | |
8 | pm2.24 124 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (¬ 𝐵 = 𝐴 → 𝐴 < 𝐵)) | |
9 | 8 | eqcoms 2741 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 = 𝐴 → 𝐴 < 𝐵)) |
10 | 7, 9 | biimtrid 241 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵)) |
11 | 10 | jao1i 857 | . . . 4 ⊢ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵)) |
12 | 6, 11 | syl6bi 253 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 < 𝐵))) |
13 | 12 | impd 412 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴) → 𝐴 < 𝐵)) |
14 | 5, 13 | impbid 211 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 class class class wbr 5106 ℝcr 11055 < clt 11194 ≤ cle 11195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11113 ax-pre-lttri 11130 ax-pre-lttrn 11131 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 |
This theorem is referenced by: ltleni 11278 ltlend 11305 nn0lt2 12571 rpneg 12952 fzofzim 13625 elfznelfzob 13684 hashsdom 14287 cnpart 15131 oddprmgt2 16580 chfacfisf 22219 chfacfisfcpmat 22220 ang180lem2 26176 mumullem2 26545 lgsneg 26685 lgsdilem 26688 lgsdirprm 26695 2sqreultlem 26811 2sqreunnltlem 26814 axlowdimlem16 27948 unitdivcld 32539 zltp1ne 33757 poimirlem24 36148 itg2addnclem 36175 fzopredsuc 45641 iccpartiltu 45700 icceuelpartlem 45713 difmodm1lt 46694 |
Copyright terms: Public domain | W3C validator |