MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsprmpweqle Structured version   Visualization version   GIF version

Theorem dvdsprmpweqle 16212
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
dvdsprmpweqle ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁   𝑃,𝑛

Proof of Theorem dvdsprmpweqle
StepHypRef Expression
1 dvdsprmpweq 16210 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
21imp 410 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛))
3 nn0re 11894 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant3 1132 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
54adantr 484 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → 𝑁 ∈ ℝ)
6 nn0re 11894 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
75, 6anim12ci 616 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ))
87adantr 484 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ))
9 lelttric 10736 . . . . . . . 8 ((𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑛𝑁𝑁 < 𝑛))
108, 9syl 17 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝑁 < 𝑛))
11 breq1 5033 . . . . . . . . . . . . . . . 16 (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
1211adantl 485 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
13 prmnn 16008 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1413nnnn0d 11943 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
15143ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ0)
1615adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℕ0)
17 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
1816, 17nn0expcld 13603 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℕ0)
1918nn0zd 12073 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℤ)
2013nncnd 11641 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
21203ad2ant1 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℂ)
2221adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℂ)
2313nnne0d 11675 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ≠ 0)
24233ad2ant1 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ≠ 0)
2524adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ≠ 0)
26 nn0z 11993 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
2726adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
2822, 25, 27expne0d 13512 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ≠ 0)
29 simp3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3029adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3116, 30nn0expcld 13603 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℕ0)
3231nn0zd 12073 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℤ)
33 dvdsval2 15602 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0 ∧ (𝑃𝑁) ∈ ℤ) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3419, 28, 32, 33syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3520, 23jca 515 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → (𝑃 ∈ ℂ ∧ 𝑃 ≠ 0))
36353ad2ant1 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∈ ℂ ∧ 𝑃 ≠ 0))
37 nn0z 11993 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
38373ad2ant3 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3938, 26anim12i 615 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
40 expsub 13473 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑃↑(𝑁𝑛)) = ((𝑃𝑁) / (𝑃𝑛)))
4140eqcomd 2804 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4236, 39, 41syl2an2r 684 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4342eleq1d 2874 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ ↔ (𝑃↑(𝑁𝑛)) ∈ ℤ))
4422adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℂ)
45 nn0cn 11895 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
46453ad2ant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4746adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
48 nn0cn 11895 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4948adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
5047, 49subcld 10986 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁𝑛) ∈ ℂ)
5150adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁𝑛) ∈ ℂ)
5246, 48anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
5352adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
54 negsubdi2 10934 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ) → -(𝑁𝑛) = (𝑛𝑁))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) = (𝑛𝑁))
5629anim1ci 618 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
57 ltsubnn0 11936 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
5958imp 410 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ0)
6055, 59eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) ∈ ℕ0)
61 expneg2 13434 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℂ ∧ (𝑁𝑛) ∈ ℂ ∧ -(𝑁𝑛) ∈ ℕ0) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6244, 51, 60, 61syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6362eleq1d 2874 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ ↔ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ))
6413nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
65643ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
6665adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℝ)
6766adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℝ)
6867, 59reexpcld 13523 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑛𝑁)) ∈ ℝ)
69 znnsub 12016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7039, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7170biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ)
72 prmgt1 16031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 1 < 𝑃)
73723ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 < 𝑃)
7473adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 1 < 𝑃)
7574adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < 𝑃)
76 expgt1 13463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℝ ∧ (𝑛𝑁) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑛𝑁)))
7767, 71, 75, 76syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < (𝑃↑(𝑛𝑁)))
7868, 77jca 515 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁))))
79 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-(𝑁𝑛) = (𝑛𝑁) → (𝑃↑-(𝑁𝑛)) = (𝑃↑(𝑛𝑁)))
8079eleq1d 2874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ↔ (𝑃↑(𝑛𝑁)) ∈ ℝ))
8179breq2d 5042 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → (1 < (𝑃↑-(𝑁𝑛)) ↔ 1 < (𝑃↑(𝑛𝑁))))
8280, 81anbi12d 633 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-(𝑁𝑛) = (𝑛𝑁) → (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) ↔ ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁)))))
8378, 82syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛)))))
8455, 83mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))))
85 recnz 12045 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8786pm2.21d 121 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ → 𝑛𝑁))
8863, 87sylbid 243 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁))
8988ex 416 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁)))
9089com23 86 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9143, 90sylbid 243 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9234, 91sylbid 243 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9392adantr 484 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9412, 93sylbid 243 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9594ex 416 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁))))
9695com23 86 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁))))
9796ex 416 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
9897com23 86 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝑛 ∈ ℕ0 → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
9998imp41 429 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑁 < 𝑛𝑛𝑁))
10099com12 32 . . . . . . . 8 (𝑁 < 𝑛 → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
101100jao1i 855 . . . . . . 7 ((𝑛𝑁𝑁 < 𝑛) → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
10210, 101mpcom 38 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁)
103 simpr 488 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝐴 = (𝑃𝑛))
104102, 103jca 515 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝐴 = (𝑃𝑛)))
105104ex 416 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝑛𝑁𝐴 = (𝑃𝑛))))
106105reximdva 3233 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
1072, 106mpd 15 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛)))
108107ex 416 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cexp 13425  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164
This theorem is referenced by:  odz2prm2pw  44078
  Copyright terms: Public domain W3C validator