MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsprmpweqle Structured version   Visualization version   GIF version

Theorem dvdsprmpweqle 16758
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
dvdsprmpweqle ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁   𝑃,𝑛

Proof of Theorem dvdsprmpweqle
StepHypRef Expression
1 dvdsprmpweq 16756 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
21imp 407 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛))
3 nn0re 12422 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant3 1135 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
54adantr 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → 𝑁 ∈ ℝ)
6 nn0re 12422 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
75, 6anim12ci 614 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ))
87adantr 481 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ))
9 lelttric 11262 . . . . . . . 8 ((𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑛𝑁𝑁 < 𝑛))
108, 9syl 17 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝑁 < 𝑛))
11 breq1 5108 . . . . . . . . . . . . . . . 16 (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
1211adantl 482 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
13 prmnn 16550 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1413nnnn0d 12473 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
15143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ0)
1615adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℕ0)
17 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
1816, 17nn0expcld 14149 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℕ0)
1918nn0zd 12525 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℤ)
2013nncnd 12169 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
21203ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℂ)
2221adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℂ)
2313nnne0d 12203 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ≠ 0)
24233ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ≠ 0)
2524adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ≠ 0)
26 nn0z 12524 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
2726adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
2822, 25, 27expne0d 14057 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ≠ 0)
29 simp3 1138 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3029adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3116, 30nn0expcld 14149 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℕ0)
3231nn0zd 12525 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℤ)
33 dvdsval2 16139 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0 ∧ (𝑃𝑁) ∈ ℤ) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3419, 28, 32, 33syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3520, 23jca 512 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → (𝑃 ∈ ℂ ∧ 𝑃 ≠ 0))
36353ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∈ ℂ ∧ 𝑃 ≠ 0))
37 nn0z 12524 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
38373ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3938, 26anim12i 613 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
40 expsub 14016 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑃↑(𝑁𝑛)) = ((𝑃𝑁) / (𝑃𝑛)))
4140eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4236, 39, 41syl2an2r 683 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4342eleq1d 2822 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ ↔ (𝑃↑(𝑁𝑛)) ∈ ℤ))
4422adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℂ)
45 nn0cn 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
46453ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
48 nn0cn 12423 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4948adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
5047, 49subcld 11512 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁𝑛) ∈ ℂ)
5150adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁𝑛) ∈ ℂ)
5246, 48anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
5352adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
54 negsubdi2 11460 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ) → -(𝑁𝑛) = (𝑛𝑁))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) = (𝑛𝑁))
5629anim1ci 616 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
57 ltsubnn0 12464 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
5958imp 407 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ0)
6055, 59eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) ∈ ℕ0)
61 expneg2 13976 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℂ ∧ (𝑁𝑛) ∈ ℂ ∧ -(𝑁𝑛) ∈ ℕ0) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6244, 51, 60, 61syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6362eleq1d 2822 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ ↔ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ))
6413nnred 12168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
65643ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℝ)
6766adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℝ)
6867, 59reexpcld 14068 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑛𝑁)) ∈ ℝ)
69 znnsub 12549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7039, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7170biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ)
72 prmgt1 16573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 1 < 𝑃)
73723ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 < 𝑃)
7473adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 1 < 𝑃)
7574adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < 𝑃)
76 expgt1 14006 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℝ ∧ (𝑛𝑁) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑛𝑁)))
7767, 71, 75, 76syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < (𝑃↑(𝑛𝑁)))
7868, 77jca 512 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁))))
79 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-(𝑁𝑛) = (𝑛𝑁) → (𝑃↑-(𝑁𝑛)) = (𝑃↑(𝑛𝑁)))
8079eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ↔ (𝑃↑(𝑛𝑁)) ∈ ℝ))
8179breq2d 5117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → (1 < (𝑃↑-(𝑁𝑛)) ↔ 1 < (𝑃↑(𝑛𝑁))))
8280, 81anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-(𝑁𝑛) = (𝑛𝑁) → (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) ↔ ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁)))))
8378, 82syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛)))))
8455, 83mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))))
85 recnz 12578 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8786pm2.21d 121 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ → 𝑛𝑁))
8863, 87sylbid 239 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁))
8988ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁)))
9089com23 86 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9143, 90sylbid 239 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9234, 91sylbid 239 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9392adantr 481 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9412, 93sylbid 239 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9594ex 413 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁))))
9695com23 86 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁))))
9796ex 413 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
9897com23 86 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝑛 ∈ ℕ0 → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
9998imp41 426 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑁 < 𝑛𝑛𝑁))
10099com12 32 . . . . . . . 8 (𝑁 < 𝑛 → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
101100jao1i 856 . . . . . . 7 ((𝑛𝑁𝑁 < 𝑛) → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
10210, 101mpcom 38 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁)
103 simpr 485 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝐴 = (𝑃𝑛))
104102, 103jca 512 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝐴 = (𝑃𝑛)))
105104ex 413 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝑛𝑁𝐴 = (𝑃𝑛))))
106105reximdva 3165 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
1072, 106mpd 15 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛)))
108107ex 413 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073   class class class wbr 5105  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cexp 13967  cdvds 16136  cprime 16547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709
This theorem is referenced by:  odz2prm2pw  45745
  Copyright terms: Public domain W3C validator