MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsprmpweqle Structured version   Visualization version   GIF version

Theorem dvdsprmpweqle 16815
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
dvdsprmpweqle ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁   𝑃,𝑛

Proof of Theorem dvdsprmpweqle
StepHypRef Expression
1 dvdsprmpweq 16813 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
21imp 408 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛))
3 nn0re 12477 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant3 1136 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
54adantr 482 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → 𝑁 ∈ ℝ)
6 nn0re 12477 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
75, 6anim12ci 615 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ))
87adantr 482 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ))
9 lelttric 11317 . . . . . . . 8 ((𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑛𝑁𝑁 < 𝑛))
108, 9syl 17 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝑁 < 𝑛))
11 breq1 5150 . . . . . . . . . . . . . . . 16 (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
1211adantl 483 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) ↔ (𝑃𝑛) ∥ (𝑃𝑁)))
13 prmnn 16607 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1413nnnn0d 12528 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
15143ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ0)
1615adantr 482 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℕ0)
17 simpr 486 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
1816, 17nn0expcld 14205 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℕ0)
1918nn0zd 12580 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℤ)
2013nncnd 12224 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
21203ad2ant1 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℂ)
2221adantr 482 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℂ)
2313nnne0d 12258 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ≠ 0)
24233ad2ant1 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ≠ 0)
2524adantr 482 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ≠ 0)
26 nn0z 12579 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
2726adantl 483 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
2822, 25, 27expne0d 14113 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ≠ 0)
29 simp3 1139 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3029adantr 482 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
3116, 30nn0expcld 14205 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℕ0)
3231nn0zd 12580 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑃𝑁) ∈ ℤ)
33 dvdsval2 16196 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0 ∧ (𝑃𝑁) ∈ ℤ) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3419, 28, 32, 33syl3anc 1372 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) ↔ ((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ))
3520, 23jca 513 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → (𝑃 ∈ ℂ ∧ 𝑃 ≠ 0))
36353ad2ant1 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∈ ℂ ∧ 𝑃 ≠ 0))
37 nn0z 12579 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
38373ad2ant3 1136 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
3938, 26anim12i 614 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
40 expsub 14072 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑃↑(𝑁𝑛)) = ((𝑃𝑁) / (𝑃𝑛)))
4140eqcomd 2739 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4236, 39, 41syl2an2r 684 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑁) / (𝑃𝑛)) = (𝑃↑(𝑁𝑛)))
4342eleq1d 2819 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ ↔ (𝑃↑(𝑁𝑛)) ∈ ℤ))
4422adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℂ)
45 nn0cn 12478 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
46453ad2ant3 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
4746adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
48 nn0cn 12478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
4948adantl 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
5047, 49subcld 11567 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁𝑛) ∈ ℂ)
5150adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁𝑛) ∈ ℂ)
5246, 48anim12i 614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
5352adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ))
54 negsubdi2 11515 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ) → -(𝑁𝑛) = (𝑛𝑁))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) = (𝑛𝑁))
5629anim1ci 617 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
57 ltsubnn0 12519 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → (𝑛𝑁) ∈ ℕ0))
5958imp 408 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ0)
6055, 59eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → -(𝑁𝑛) ∈ ℕ0)
61 expneg2 14032 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℂ ∧ (𝑁𝑛) ∈ ℂ ∧ -(𝑁𝑛) ∈ ℕ0) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6244, 51, 60, 61syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑁𝑛)) = (1 / (𝑃↑-(𝑁𝑛))))
6362eleq1d 2819 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ ↔ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ))
6413nnred 12223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
65643ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
6665adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑃 ∈ ℝ)
6766adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 𝑃 ∈ ℝ)
6867, 59reexpcld 14124 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑃↑(𝑛𝑁)) ∈ ℝ)
69 znnsub 12604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7039, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 ↔ (𝑛𝑁) ∈ ℕ))
7170biimpa 478 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (𝑛𝑁) ∈ ℕ)
72 prmgt1 16630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑃 ∈ ℙ → 1 < 𝑃)
73723ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 < 𝑃)
7473adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 1 < 𝑃)
7574adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < 𝑃)
76 expgt1 14062 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℝ ∧ (𝑛𝑁) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑛𝑁)))
7767, 71, 75, 76syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → 1 < (𝑃↑(𝑛𝑁)))
7868, 77jca 513 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁))))
79 oveq2 7412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-(𝑁𝑛) = (𝑛𝑁) → (𝑃↑-(𝑁𝑛)) = (𝑃↑(𝑛𝑁)))
8079eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ↔ (𝑃↑(𝑛𝑁)) ∈ ℝ))
8179breq2d 5159 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-(𝑁𝑛) = (𝑛𝑁) → (1 < (𝑃↑-(𝑁𝑛)) ↔ 1 < (𝑃↑(𝑛𝑁))))
8280, 81anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-(𝑁𝑛) = (𝑛𝑁) → (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) ↔ ((𝑃↑(𝑛𝑁)) ∈ ℝ ∧ 1 < (𝑃↑(𝑛𝑁)))))
8378, 82syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → (-(𝑁𝑛) = (𝑛𝑁) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛)))))
8455, 83mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))))
85 recnz 12633 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃↑-(𝑁𝑛)) ∈ ℝ ∧ 1 < (𝑃↑-(𝑁𝑛))) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ¬ (1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ)
8786pm2.21d 121 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((1 / (𝑃↑-(𝑁𝑛))) ∈ ℤ → 𝑛𝑁))
8863, 87sylbid 239 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑁 < 𝑛) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁))
8988ex 414 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑁 < 𝑛 → ((𝑃↑(𝑁𝑛)) ∈ ℤ → 𝑛𝑁)))
9089com23 86 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃↑(𝑁𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9143, 90sylbid 239 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑃𝑁) / (𝑃𝑛)) ∈ ℤ → (𝑁 < 𝑛𝑛𝑁)))
9234, 91sylbid 239 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9392adantr 482 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → ((𝑃𝑛) ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9412, 93sylbid 239 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁)))
9594ex 414 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝐴 ∥ (𝑃𝑁) → (𝑁 < 𝑛𝑛𝑁))))
9695com23 86 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁))))
9796ex 414 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑛 ∈ ℕ0 → (𝐴 ∥ (𝑃𝑁) → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
9897com23 86 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → (𝑛 ∈ ℕ0 → (𝐴 = (𝑃𝑛) → (𝑁 < 𝑛𝑛𝑁)))))
9998imp41 427 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑁 < 𝑛𝑛𝑁))
10099com12 32 . . . . . . . 8 (𝑁 < 𝑛 → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
101100jao1i 857 . . . . . . 7 ((𝑛𝑁𝑁 < 𝑛) → (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁))
10210, 101mpcom 38 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝑛𝑁)
103 simpr 486 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → 𝐴 = (𝑃𝑛))
104102, 103jca 513 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝐴 = (𝑃𝑛)) → (𝑛𝑁𝐴 = (𝑃𝑛)))
105104ex 414 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝐴 = (𝑃𝑛) → (𝑛𝑁𝐴 = (𝑃𝑛))))
106105reximdva 3169 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
1072, 106mpd 15 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛)))
108107ex 414 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 (𝑛𝑁𝐴 = (𝑃𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wrex 3071   class class class wbr 5147  (class class class)co 7404  cc 11104  cr 11105  0cc0 11106  1c1 11107   < clt 11244  cle 11245  cmin 11440  -cneg 11441   / cdiv 11867  cn 12208  0cn0 12468  cz 12554  cexp 14023  cdvds 16193  cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766
This theorem is referenced by:  odz2prm2pw  46166
  Copyright terms: Public domain W3C validator