MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preleqg Structured version   Visualization version   GIF version

Theorem preleqg 9064
Description: Equality of two unordered pairs when one member of each pair contains the other member. Closed form of preleq 9065. (Contributed by AV, 15-Jun-2022.)
Assertion
Ref Expression
preleqg (((𝐴𝐵𝐵𝑉𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem preleqg
StepHypRef Expression
1 elneq 9048 . . . . 5 (𝐴𝐵𝐴𝐵)
213ad2ant1 1129 . . . 4 ((𝐴𝐵𝐵𝑉𝐶𝐷) → 𝐴𝐵)
3 preq12nebg 4779 . . . 4 ((𝐴𝐵𝐵𝑉𝐴𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
42, 3syld3an3 1405 . . 3 ((𝐴𝐵𝐵𝑉𝐶𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
5 eleq12 2902 . . . . . . . . . 10 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵𝐷𝐶))
6 elnotel 9059 . . . . . . . . . . 11 (𝐷𝐶 → ¬ 𝐶𝐷)
76pm2.21d 121 . . . . . . . . . 10 (𝐷𝐶 → (𝐶𝐷 → (𝐴 = 𝐶𝐵 = 𝐷)))
85, 7syl6bi 255 . . . . . . . . 9 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵 → (𝐶𝐷 → (𝐴 = 𝐶𝐵 = 𝐷))))
98com3l 89 . . . . . . . 8 (𝐴𝐵 → (𝐶𝐷 → ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴 = 𝐶𝐵 = 𝐷))))
109a1d 25 . . . . . . 7 (𝐴𝐵 → (𝐵𝑉 → (𝐶𝐷 → ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴 = 𝐶𝐵 = 𝐷)))))
11103imp 1107 . . . . . 6 ((𝐴𝐵𝐵𝑉𝐶𝐷) → ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴 = 𝐶𝐵 = 𝐷)))
1211com12 32 . . . . 5 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝐵𝐵𝑉𝐶𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
1312jao1i 854 . . . 4 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → ((𝐴𝐵𝐵𝑉𝐶𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
1413com12 32 . . 3 ((𝐴𝐵𝐵𝑉𝐶𝐷) → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → (𝐴 = 𝐶𝐵 = 𝐷)))
154, 14sylbid 242 . 2 ((𝐴𝐵𝐵𝑉𝐶𝐷) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷)))
1615imp 409 1 (((𝐴𝐵𝐵𝑉𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  {cpr 4555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pr 5316  ax-reg 9042
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-br 5053  df-opab 5115  df-eprel 5451  df-fr 5500
This theorem is referenced by:  preleq  9065
  Copyright terms: Public domain W3C validator