![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znnn0nn | Structured version Visualization version GIF version |
Description: The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
znnn0nn | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) | |
2 | 1 | znegcld 12706 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ) |
3 | elznn 12612 | . . . 4 ⊢ (-𝑁 ∈ ℤ ↔ (-𝑁 ∈ ℝ ∧ (-𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ0))) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 ∈ ℝ ∧ (-𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ0))) |
5 | 4 | simprd 494 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → (-𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ0)) |
6 | zcn 12601 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
7 | 6 | adantr 479 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
8 | 7 | negnegd 11600 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → --𝑁 = 𝑁) |
9 | simpr 483 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → ¬ 𝑁 ∈ ℕ0) | |
10 | 8, 9 | eqneltrd 2849 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → ¬ --𝑁 ∈ ℕ0) |
11 | pm2.24 124 | . . 3 ⊢ (--𝑁 ∈ ℕ0 → (¬ --𝑁 ∈ ℕ0 → -𝑁 ∈ ℕ)) | |
12 | 11 | jao1i 856 | . 2 ⊢ ((-𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ0) → (¬ --𝑁 ∈ ℕ0 → -𝑁 ∈ ℕ)) |
13 | 5, 10, 12 | sylc 65 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 ∈ wcel 2098 ℂcc 11144 ℝcr 11145 -cneg 11483 ℕcn 12250 ℕ0cn0 12510 ℤcz 12596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-ltxr 11291 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 |
This theorem is referenced by: negn0nposznnd 41887 fperiodmul 44715 dignn0fr 47752 |
Copyright terms: Public domain | W3C validator |