![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpi | ⊢ <N ⊆ (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 10944 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
2 | inss2 4259 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
3 | 1, 2 | eqsstri 4043 | 1 ⊢ <N ⊆ (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3975 ⊆ wss 3976 E cep 5598 × cxp 5698 Ncnpi 10913 <N clti 10916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-lti 10944 |
This theorem is referenced by: ltapi 10972 ltmpi 10973 nlt1pi 10975 indpi 10976 ordpipq 11011 ltsonq 11038 archnq 11049 |
Copyright terms: Public domain | W3C validator |