MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpi Structured version   Visualization version   GIF version

Theorem ltrelpi 10645
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 10631 . 2 <N = ( E ∩ (N × N))
2 inss2 4163 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3955 1 <N ⊆ (N × N)
Colors of variables: wff setvar class
Syntax hints:  cin 3886  wss 3887   E cep 5494   × cxp 5587  Ncnpi 10600   <N clti 10603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-lti 10631
This theorem is referenced by:  ltapi  10659  ltmpi  10660  nlt1pi  10662  indpi  10663  ordpipq  10698  ltsonq  10725  archnq  10736
  Copyright terms: Public domain W3C validator