MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpi Structured version   Visualization version   GIF version

Theorem ltrelpi 10747
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 10733 . 2 <N = ( E ∩ (N × N))
2 inss2 4177 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3966 1 <N ⊆ (N × N)
Colors of variables: wff setvar class
Syntax hints:  cin 3897  wss 3898   E cep 5524   × cxp 5619  Ncnpi 10702   <N clti 10705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-in 3905  df-ss 3915  df-lti 10733
This theorem is referenced by:  ltapi  10761  ltmpi  10762  nlt1pi  10764  indpi  10765  ordpipq  10800  ltsonq  10827  archnq  10838
  Copyright terms: Public domain W3C validator