MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpi Structured version   Visualization version   GIF version

Theorem ltrelpi 10046
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 10032 . 2 <N = ( E ∩ (N × N))
2 inss2 4053 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3853 1 <N ⊆ (N × N)
Colors of variables: wff setvar class
Syntax hints:  cin 3790  wss 3791   E cep 5265   × cxp 5353  Ncnpi 10001   <N clti 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-v 3399  df-in 3798  df-ss 3805  df-lti 10032
This theorem is referenced by:  ltapi  10060  ltmpi  10061  nlt1pi  10063  indpi  10064  ordpipq  10099  ltsonq  10126  archnq  10137
  Copyright terms: Public domain W3C validator