MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpi Structured version   Visualization version   GIF version

Theorem ltrelpi 10576
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 10562 . 2 <N = ( E ∩ (N × N))
2 inss2 4160 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3951 1 <N ⊆ (N × N)
Colors of variables: wff setvar class
Syntax hints:  cin 3882  wss 3883   E cep 5485   × cxp 5578  Ncnpi 10531   <N clti 10534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-lti 10562
This theorem is referenced by:  ltapi  10590  ltmpi  10591  nlt1pi  10593  indpi  10594  ordpipq  10629  ltsonq  10656  archnq  10667
  Copyright terms: Public domain W3C validator