![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpi | ⊢ <N ⊆ (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 10913 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
2 | inss2 4246 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
3 | 1, 2 | eqsstri 4030 | 1 ⊢ <N ⊆ (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3962 ⊆ wss 3963 E cep 5588 × cxp 5687 Ncnpi 10882 <N clti 10885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-lti 10913 |
This theorem is referenced by: ltapi 10941 ltmpi 10942 nlt1pi 10944 indpi 10945 ordpipq 10980 ltsonq 11007 archnq 11018 |
Copyright terms: Public domain | W3C validator |