Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpi | ⊢ <N ⊆ (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 10562 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
2 | inss2 4160 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ <N ⊆ (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3882 ⊆ wss 3883 E cep 5485 × cxp 5578 Ncnpi 10531 <N clti 10534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-lti 10562 |
This theorem is referenced by: ltapi 10590 ltmpi 10591 nlt1pi 10593 indpi 10594 ordpipq 10629 ltsonq 10656 archnq 10667 |
Copyright terms: Public domain | W3C validator |