| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelpi | ⊢ <N ⊆ (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 10773 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | inss2 4187 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
| 3 | 1, 2 | eqsstri 3977 | 1 ⊢ <N ⊆ (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3897 ⊆ wss 3898 E cep 5518 × cxp 5617 Ncnpi 10742 <N clti 10745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-lti 10773 |
| This theorem is referenced by: ltapi 10801 ltmpi 10802 nlt1pi 10804 indpi 10805 ordpipq 10840 ltsonq 10867 archnq 10878 |
| Copyright terms: Public domain | W3C validator |