| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelpi | ⊢ <N ⊆ (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 10835 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | inss2 4204 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
| 3 | 1, 2 | eqsstri 3996 | 1 ⊢ <N ⊆ (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3916 ⊆ wss 3917 E cep 5540 × cxp 5639 Ncnpi 10804 <N clti 10807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-lti 10835 |
| This theorem is referenced by: ltapi 10863 ltmpi 10864 nlt1pi 10866 indpi 10867 ordpipq 10902 ltsonq 10929 archnq 10940 |
| Copyright terms: Public domain | W3C validator |