MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpi Structured version   Visualization version   GIF version

Theorem ltrelpi 10849
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpi <N ⊆ (N × N)

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 10835 . 2 <N = ( E ∩ (N × N))
2 inss2 4204 . 2 ( E ∩ (N × N)) ⊆ (N × N)
31, 2eqsstri 3996 1 <N ⊆ (N × N)
Colors of variables: wff setvar class
Syntax hints:  cin 3916  wss 3917   E cep 5540   × cxp 5639  Ncnpi 10804   <N clti 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-lti 10835
This theorem is referenced by:  ltapi  10863  ltmpi  10864  nlt1pi  10866  indpi  10867  ordpipq  10902  ltsonq  10929  archnq  10940
  Copyright terms: Public domain W3C validator