| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltrelpi | ⊢ <N ⊆ (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 10889 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | inss2 4213 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
| 3 | 1, 2 | eqsstri 4005 | 1 ⊢ <N ⊆ (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3925 ⊆ wss 3926 E cep 5552 × cxp 5652 Ncnpi 10858 <N clti 10861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-lti 10889 |
| This theorem is referenced by: ltapi 10917 ltmpi 10918 nlt1pi 10920 indpi 10921 ordpipq 10956 ltsonq 10983 archnq 10994 |
| Copyright terms: Public domain | W3C validator |