Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpi | ⊢ <N ⊆ (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 10733 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
2 | inss2 4177 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
3 | 1, 2 | eqsstri 3966 | 1 ⊢ <N ⊆ (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3897 ⊆ wss 3898 E cep 5524 × cxp 5619 Ncnpi 10702 <N clti 10705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-in 3905 df-ss 3915 df-lti 10733 |
This theorem is referenced by: ltapi 10761 ltmpi 10762 nlt1pi 10764 indpi 10765 ordpipq 10800 ltsonq 10827 archnq 10838 |
Copyright terms: Public domain | W3C validator |