![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopi | ⊢ <N Or N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10897 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4128 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | omsson 7875 | . . . . 5 ⊢ ω ⊆ On | |
4 | 2, 3 | sstri 3986 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 4011 | . . 3 ⊢ N ⊆ On |
6 | epweon 7778 | . . . 4 ⊢ E We On | |
7 | weso 5669 | . . . 4 ⊢ ( E We On → E Or On) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
9 | soss 5610 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
11 | df-lti 10900 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
12 | soeq1 5611 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
14 | soinxp 5759 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
15 | 13, 14 | bitr4i 277 | . 2 ⊢ ( <N Or N ↔ E Or N) |
16 | 10, 15 | mpbir 230 | 1 ⊢ <N Or N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∖ cdif 3941 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 {csn 4630 E cep 5581 Or wor 5589 We wwe 5632 × cxp 5676 Oncon0 6371 ωcom 7871 Ncnpi 10869 <N clti 10872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-ord 6374 df-on 6375 df-om 7872 df-ni 10897 df-lti 10900 |
This theorem is referenced by: indpi 10932 nqereu 10954 ltsonq 10994 archnq 11005 |
Copyright terms: Public domain | W3C validator |