MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10628
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10612 . . . 4 N = (ω ∖ {∅})
2 difss 4070 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7704 . . . . 5 ω ⊆ On
42, 3sstri 3934 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 3959 . . 3 N ⊆ On
6 epweon 7616 . . . 4 E We On
7 weso 5579 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5522 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10615 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5523 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5667 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 277 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 230 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  cdif 3888  cin 3890  wss 3891  c0 4261  {csn 4566   E cep 5493   Or wor 5501   We wwe 5542   × cxp 5586  Oncon0 6263  ωcom 7700  Ncnpi 10584   <N clti 10587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-tr 5196  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-ord 6266  df-on 6267  df-om 7701  df-ni 10612  df-lti 10615
This theorem is referenced by:  indpi  10647  nqereu  10669  ltsonq  10709  archnq  10720
  Copyright terms: Public domain W3C validator