![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopi | ⊢ <N Or N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10867 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4132 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | omsson 7859 | . . . . 5 ⊢ ω ⊆ On | |
4 | 2, 3 | sstri 3992 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 4017 | . . 3 ⊢ N ⊆ On |
6 | epweon 7762 | . . . 4 ⊢ E We On | |
7 | weso 5668 | . . . 4 ⊢ ( E We On → E Or On) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
9 | soss 5609 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
11 | df-lti 10870 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
12 | soeq1 5610 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
14 | soinxp 5758 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
15 | 13, 14 | bitr4i 278 | . 2 ⊢ ( <N Or N ↔ E Or N) |
16 | 10, 15 | mpbir 230 | 1 ⊢ <N Or N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∖ cdif 3946 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 {csn 4629 E cep 5580 Or wor 5588 We wwe 5631 × cxp 5675 Oncon0 6365 ωcom 7855 Ncnpi 10839 <N clti 10842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-ord 6368 df-on 6369 df-om 7856 df-ni 10867 df-lti 10870 |
This theorem is referenced by: indpi 10902 nqereu 10924 ltsonq 10964 archnq 10975 |
Copyright terms: Public domain | W3C validator |