MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10883
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10867 . . . 4 N = (ω ∖ {∅})
2 difss 4132 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7859 . . . . 5 ω ⊆ On
42, 3sstri 3992 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 4017 . . 3 N ⊆ On
6 epweon 7762 . . . 4 E We On
7 weso 5668 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5609 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10870 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5610 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5758 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 278 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 230 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  cdif 3946  cin 3948  wss 3949  c0 4323  {csn 4629   E cep 5580   Or wor 5588   We wwe 5631   × cxp 5675  Oncon0 6365  ωcom 7855  Ncnpi 10839   <N clti 10842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-ord 6368  df-on 6369  df-om 7856  df-ni 10867  df-lti 10870
This theorem is referenced by:  indpi  10902  nqereu  10924  ltsonq  10964  archnq  10975
  Copyright terms: Public domain W3C validator