MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10925
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10909 . . . 4 N = (ω ∖ {∅})
2 difss 4145 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7890 . . . . 5 ω ⊆ On
42, 3sstri 4004 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 4029 . . 3 N ⊆ On
6 epweon 7793 . . . 4 E We On
7 weso 5679 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5616 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10912 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5617 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5769 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 278 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 231 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1536  cdif 3959  cin 3961  wss 3962  c0 4338  {csn 4630   E cep 5587   Or wor 5595   We wwe 5639   × cxp 5686  Oncon0 6385  ωcom 7886  Ncnpi 10881   <N clti 10884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-ord 6388  df-on 6389  df-om 7887  df-ni 10909  df-lti 10912
This theorem is referenced by:  indpi  10944  nqereu  10966  ltsonq  11006  archnq  11017
  Copyright terms: Public domain W3C validator