Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopi | ⊢ <N Or N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10612 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4070 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | omsson 7704 | . . . . 5 ⊢ ω ⊆ On | |
4 | 2, 3 | sstri 3934 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 3959 | . . 3 ⊢ N ⊆ On |
6 | epweon 7616 | . . . 4 ⊢ E We On | |
7 | weso 5579 | . . . 4 ⊢ ( E We On → E Or On) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
9 | soss 5522 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
11 | df-lti 10615 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
12 | soeq1 5523 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
14 | soinxp 5667 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
15 | 13, 14 | bitr4i 277 | . 2 ⊢ ( <N Or N ↔ E Or N) |
16 | 10, 15 | mpbir 230 | 1 ⊢ <N Or N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∖ cdif 3888 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 {csn 4566 E cep 5493 Or wor 5501 We wwe 5542 × cxp 5586 Oncon0 6263 ωcom 7700 Ncnpi 10584 <N clti 10587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-ord 6266 df-on 6267 df-om 7701 df-ni 10612 df-lti 10615 |
This theorem is referenced by: indpi 10647 nqereu 10669 ltsonq 10709 archnq 10720 |
Copyright terms: Public domain | W3C validator |