MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10957
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10941 . . . 4 N = (ω ∖ {∅})
2 difss 4159 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7907 . . . . 5 ω ⊆ On
42, 3sstri 4018 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 4043 . . 3 N ⊆ On
6 epweon 7810 . . . 4 E We On
7 weso 5691 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5628 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10944 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5629 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5781 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 278 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 231 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  cdif 3973  cin 3975  wss 3976  c0 4352  {csn 4648   E cep 5598   Or wor 5606   We wwe 5651   × cxp 5698  Oncon0 6395  ωcom 7903  Ncnpi 10913   <N clti 10916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-ord 6398  df-on 6399  df-om 7904  df-ni 10941  df-lti 10944
This theorem is referenced by:  indpi  10976  nqereu  10998  ltsonq  11038  archnq  11049
  Copyright terms: Public domain W3C validator