MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10801
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10785 . . . 4 N = (ω ∖ {∅})
2 difss 4089 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7810 . . . . 5 ω ⊆ On
42, 3sstri 3947 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 3984 . . 3 N ⊆ On
6 epweon 7715 . . . 4 E We On
7 weso 5614 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5551 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10788 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5552 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5705 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 278 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 231 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cdif 3902  cin 3904  wss 3905  c0 4286  {csn 4579   E cep 5522   Or wor 5530   We wwe 5575   × cxp 5621  Oncon0 6311  ωcom 7806  Ncnpi 10757   <N clti 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-ord 6314  df-on 6315  df-om 7807  df-ni 10785  df-lti 10788
This theorem is referenced by:  indpi  10820  nqereu  10842  ltsonq  10882  archnq  10893
  Copyright terms: Public domain W3C validator