| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsopi | ⊢ <N Or N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10884 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4111 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | omsson 7863 | . . . . 5 ⊢ ω ⊆ On | |
| 4 | 2, 3 | sstri 3968 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
| 5 | 1, 4 | eqsstri 4005 | . . 3 ⊢ N ⊆ On |
| 6 | epweon 7767 | . . . 4 ⊢ E We On | |
| 7 | weso 5645 | . . . 4 ⊢ ( E We On → E Or On) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
| 9 | soss 5581 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
| 10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
| 11 | df-lti 10887 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
| 12 | soeq1 5582 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
| 14 | soinxp 5736 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
| 15 | 13, 14 | bitr4i 278 | . 2 ⊢ ( <N Or N ↔ E Or N) |
| 16 | 10, 15 | mpbir 231 | 1 ⊢ <N Or N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 E cep 5552 Or wor 5560 We wwe 5605 × cxp 5652 Oncon0 6352 ωcom 7859 Ncnpi 10856 <N clti 10859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-ord 6355 df-on 6356 df-om 7860 df-ni 10884 df-lti 10887 |
| This theorem is referenced by: indpi 10919 nqereu 10941 ltsonq 10981 archnq 10992 |
| Copyright terms: Public domain | W3C validator |