MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10786
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10770 . . . 4 N = (ω ∖ {∅})
2 difss 4085 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7806 . . . . 5 ω ⊆ On
42, 3sstri 3940 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 3977 . . 3 N ⊆ On
6 epweon 7714 . . . 4 E We On
7 weso 5610 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5547 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10773 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5548 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5701 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 278 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 231 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  cdif 3895  cin 3897  wss 3898  c0 4282  {csn 4575   E cep 5518   Or wor 5526   We wwe 5571   × cxp 5617  Oncon0 6311  ωcom 7802  Ncnpi 10742   <N clti 10745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-ord 6314  df-on 6315  df-om 7803  df-ni 10770  df-lti 10773
This theorem is referenced by:  indpi  10805  nqereu  10827  ltsonq  10867  archnq  10878
  Copyright terms: Public domain W3C validator