| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsopi | ⊢ <N Or N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10760 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4086 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | omsson 7800 | . . . . 5 ⊢ ω ⊆ On | |
| 4 | 2, 3 | sstri 3944 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
| 5 | 1, 4 | eqsstri 3981 | . . 3 ⊢ N ⊆ On |
| 6 | epweon 7708 | . . . 4 ⊢ E We On | |
| 7 | weso 5607 | . . . 4 ⊢ ( E We On → E Or On) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
| 9 | soss 5544 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
| 10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
| 11 | df-lti 10763 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
| 12 | soeq1 5545 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
| 14 | soinxp 5698 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
| 15 | 13, 14 | bitr4i 278 | . 2 ⊢ ( <N Or N ↔ E Or N) |
| 16 | 10, 15 | mpbir 231 | 1 ⊢ <N Or N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∖ cdif 3899 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {csn 4576 E cep 5515 Or wor 5523 We wwe 5568 × cxp 5614 Oncon0 6306 ωcom 7796 Ncnpi 10732 <N clti 10735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-ord 6309 df-on 6310 df-om 7797 df-ni 10760 df-lti 10763 |
| This theorem is referenced by: indpi 10795 nqereu 10817 ltsonq 10857 archnq 10868 |
| Copyright terms: Public domain | W3C validator |