![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopi | ⊢ <N Or N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10941 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4159 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | omsson 7907 | . . . . 5 ⊢ ω ⊆ On | |
4 | 2, 3 | sstri 4018 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 4043 | . . 3 ⊢ N ⊆ On |
6 | epweon 7810 | . . . 4 ⊢ E We On | |
7 | weso 5691 | . . . 4 ⊢ ( E We On → E Or On) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
9 | soss 5628 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
11 | df-lti 10944 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
12 | soeq1 5629 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
14 | soinxp 5781 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
15 | 13, 14 | bitr4i 278 | . 2 ⊢ ( <N Or N ↔ E Or N) |
16 | 10, 15 | mpbir 231 | 1 ⊢ <N Or N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 E cep 5598 Or wor 5606 We wwe 5651 × cxp 5698 Oncon0 6395 ωcom 7903 Ncnpi 10913 <N clti 10916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-ord 6398 df-on 6399 df-om 7904 df-ni 10941 df-lti 10944 |
This theorem is referenced by: indpi 10976 nqereu 10998 ltsonq 11038 archnq 11049 |
Copyright terms: Public domain | W3C validator |