![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopi | ⊢ <N Or N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10869 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4131 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | omsson 7861 | . . . . 5 ⊢ ω ⊆ On | |
4 | 2, 3 | sstri 3991 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 4016 | . . 3 ⊢ N ⊆ On |
6 | epweon 7764 | . . . 4 ⊢ E We On | |
7 | weso 5667 | . . . 4 ⊢ ( E We On → E Or On) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
9 | soss 5608 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
11 | df-lti 10872 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
12 | soeq1 5609 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
14 | soinxp 5757 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
15 | 13, 14 | bitr4i 277 | . 2 ⊢ ( <N Or N ↔ E Or N) |
16 | 10, 15 | mpbir 230 | 1 ⊢ <N Or N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {csn 4628 E cep 5579 Or wor 5587 We wwe 5630 × cxp 5674 Oncon0 6364 ωcom 7857 Ncnpi 10841 <N clti 10844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-ord 6367 df-on 6368 df-om 7858 df-ni 10869 df-lti 10872 |
This theorem is referenced by: indpi 10904 nqereu 10926 ltsonq 10966 archnq 10977 |
Copyright terms: Public domain | W3C validator |