MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10885
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10869 . . . 4 N = (ω ∖ {∅})
2 difss 4131 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7861 . . . . 5 ω ⊆ On
42, 3sstri 3991 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 4016 . . 3 N ⊆ On
6 epweon 7764 . . . 4 E We On
7 weso 5667 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5608 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10872 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5609 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5757 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 277 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 230 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  cdif 3945  cin 3947  wss 3948  c0 4322  {csn 4628   E cep 5579   Or wor 5587   We wwe 5630   × cxp 5674  Oncon0 6364  ωcom 7857  Ncnpi 10841   <N clti 10844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-ord 6367  df-on 6368  df-om 7858  df-ni 10869  df-lti 10872
This theorem is referenced by:  indpi  10904  nqereu  10926  ltsonq  10966  archnq  10977
  Copyright terms: Public domain W3C validator