MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10913
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10897 . . . 4 N = (ω ∖ {∅})
2 difss 4128 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7875 . . . . 5 ω ⊆ On
42, 3sstri 3986 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 4011 . . 3 N ⊆ On
6 epweon 7778 . . . 4 E We On
7 weso 5669 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5610 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10900 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5611 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5759 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 277 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 230 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  cdif 3941  cin 3943  wss 3944  c0 4322  {csn 4630   E cep 5581   Or wor 5589   We wwe 5632   × cxp 5676  Oncon0 6371  ωcom 7871  Ncnpi 10869   <N clti 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-ord 6374  df-on 6375  df-om 7872  df-ni 10897  df-lti 10900
This theorem is referenced by:  indpi  10932  nqereu  10954  ltsonq  10994  archnq  11005
  Copyright terms: Public domain W3C validator