![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltsopi | ⊢ <N Or N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10909 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
2 | difss 4145 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
3 | omsson 7890 | . . . . 5 ⊢ ω ⊆ On | |
4 | 2, 3 | sstri 4004 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 4029 | . . 3 ⊢ N ⊆ On |
6 | epweon 7793 | . . . 4 ⊢ E We On | |
7 | weso 5679 | . . . 4 ⊢ ( E We On → E Or On) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
9 | soss 5616 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
11 | df-lti 10912 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
12 | soeq1 5617 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
14 | soinxp 5769 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
15 | 13, 14 | bitr4i 278 | . 2 ⊢ ( <N Or N ↔ E Or N) |
16 | 10, 15 | mpbir 231 | 1 ⊢ <N Or N |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1536 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 {csn 4630 E cep 5587 Or wor 5595 We wwe 5639 × cxp 5686 Oncon0 6385 ωcom 7886 Ncnpi 10881 <N clti 10884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-ord 6388 df-on 6389 df-om 7887 df-ni 10909 df-lti 10912 |
This theorem is referenced by: indpi 10944 nqereu 10966 ltsonq 11006 archnq 11017 |
Copyright terms: Public domain | W3C validator |