| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsopi | ⊢ <N Or N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10832 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4102 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | omsson 7849 | . . . . 5 ⊢ ω ⊆ On | |
| 4 | 2, 3 | sstri 3959 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
| 5 | 1, 4 | eqsstri 3996 | . . 3 ⊢ N ⊆ On |
| 6 | epweon 7754 | . . . 4 ⊢ E We On | |
| 7 | weso 5632 | . . . 4 ⊢ ( E We On → E Or On) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
| 9 | soss 5569 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
| 10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
| 11 | df-lti 10835 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
| 12 | soeq1 5570 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
| 14 | soinxp 5723 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
| 15 | 13, 14 | bitr4i 278 | . 2 ⊢ ( <N Or N ↔ E Or N) |
| 16 | 10, 15 | mpbir 231 | 1 ⊢ <N Or N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 E cep 5540 Or wor 5548 We wwe 5593 × cxp 5639 Oncon0 6335 ωcom 7845 Ncnpi 10804 <N clti 10807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-ord 6338 df-on 6339 df-om 7846 df-ni 10832 df-lti 10835 |
| This theorem is referenced by: indpi 10867 nqereu 10889 ltsonq 10929 archnq 10940 |
| Copyright terms: Public domain | W3C validator |