| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsopi | ⊢ <N Or N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10785 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4089 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | omsson 7810 | . . . . 5 ⊢ ω ⊆ On | |
| 4 | 2, 3 | sstri 3947 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
| 5 | 1, 4 | eqsstri 3984 | . . 3 ⊢ N ⊆ On |
| 6 | epweon 7715 | . . . 4 ⊢ E We On | |
| 7 | weso 5614 | . . . 4 ⊢ ( E We On → E Or On) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
| 9 | soss 5551 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
| 10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
| 11 | df-lti 10788 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
| 12 | soeq1 5552 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
| 14 | soinxp 5705 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
| 15 | 13, 14 | bitr4i 278 | . 2 ⊢ ( <N Or N ↔ E Or N) |
| 16 | 10, 15 | mpbir 231 | 1 ⊢ <N Or N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 E cep 5522 Or wor 5530 We wwe 5575 × cxp 5621 Oncon0 6311 ωcom 7806 Ncnpi 10757 <N clti 10760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-ord 6314 df-on 6315 df-om 7807 df-ni 10785 df-lti 10788 |
| This theorem is referenced by: indpi 10820 nqereu 10842 ltsonq 10882 archnq 10893 |
| Copyright terms: Public domain | W3C validator |