| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsopi | Structured version Visualization version GIF version | ||
| Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltsopi | ⊢ <N Or N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10770 | . . . 4 ⊢ N = (ω ∖ {∅}) | |
| 2 | difss 4085 | . . . . 5 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 3 | omsson 7806 | . . . . 5 ⊢ ω ⊆ On | |
| 4 | 2, 3 | sstri 3940 | . . . 4 ⊢ (ω ∖ {∅}) ⊆ On |
| 5 | 1, 4 | eqsstri 3977 | . . 3 ⊢ N ⊆ On |
| 6 | epweon 7714 | . . . 4 ⊢ E We On | |
| 7 | weso 5610 | . . . 4 ⊢ ( E We On → E Or On) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ E Or On |
| 9 | soss 5547 | . . 3 ⊢ (N ⊆ On → ( E Or On → E Or N)) | |
| 10 | 5, 8, 9 | mp2 9 | . 2 ⊢ E Or N |
| 11 | df-lti 10773 | . . . 4 ⊢ <N = ( E ∩ (N × N)) | |
| 12 | soeq1 5548 | . . . 4 ⊢ ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N)) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ( <N Or N ↔ ( E ∩ (N × N)) Or N) |
| 14 | soinxp 5701 | . . 3 ⊢ ( E Or N ↔ ( E ∩ (N × N)) Or N) | |
| 15 | 13, 14 | bitr4i 278 | . 2 ⊢ ( <N Or N ↔ E Or N) |
| 16 | 10, 15 | mpbir 231 | 1 ⊢ <N Or N |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4575 E cep 5518 Or wor 5526 We wwe 5571 × cxp 5617 Oncon0 6311 ωcom 7802 Ncnpi 10742 <N clti 10745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-ord 6314 df-on 6315 df-om 7803 df-ni 10770 df-lti 10773 |
| This theorem is referenced by: indpi 10805 nqereu 10827 ltsonq 10867 archnq 10878 |
| Copyright terms: Public domain | W3C validator |