MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopi Structured version   Visualization version   GIF version

Theorem ltsopi 10776
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
StepHypRef Expression
1 df-ni 10760 . . . 4 N = (ω ∖ {∅})
2 difss 4086 . . . . 5 (ω ∖ {∅}) ⊆ ω
3 omsson 7800 . . . . 5 ω ⊆ On
42, 3sstri 3944 . . . 4 (ω ∖ {∅}) ⊆ On
51, 4eqsstri 3981 . . 3 N ⊆ On
6 epweon 7708 . . . 4 E We On
7 weso 5607 . . . 4 ( E We On → E Or On)
86, 7ax-mp 5 . . 3 E Or On
9 soss 5544 . . 3 (N ⊆ On → ( E Or On → E Or N))
105, 8, 9mp2 9 . 2 E Or N
11 df-lti 10763 . . . 4 <N = ( E ∩ (N × N))
12 soeq1 5545 . . . 4 ( <N = ( E ∩ (N × N)) → ( <N Or N ↔ ( E ∩ (N × N)) Or N))
1311, 12ax-mp 5 . . 3 ( <N Or N ↔ ( E ∩ (N × N)) Or N)
14 soinxp 5698 . . 3 ( E Or N ↔ ( E ∩ (N × N)) Or N)
1513, 14bitr4i 278 . 2 ( <N Or N ↔ E Or N)
1610, 15mpbir 231 1 <N Or N
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  cdif 3899  cin 3901  wss 3902  c0 4283  {csn 4576   E cep 5515   Or wor 5523   We wwe 5568   × cxp 5614  Oncon0 6306  ωcom 7796  Ncnpi 10732   <N clti 10735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-ord 6309  df-on 6310  df-om 7797  df-ni 10760  df-lti 10763
This theorem is referenced by:  indpi  10795  nqereu  10817  ltsonq  10857  archnq  10868
  Copyright terms: Public domain W3C validator