MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsonq Structured version   Visualization version   GIF version

Theorem ltsonq 10988
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltsonq <Q Or Q

Proof of Theorem ltsonq
Dummy variables 𝑠 𝑟 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpqn 10944 . . . . . . 7 (𝑥Q𝑥 ∈ (N × N))
21adantr 480 . . . . . 6 ((𝑥Q𝑦Q) → 𝑥 ∈ (N × N))
3 xp1st 8025 . . . . . 6 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
42, 3syl 17 . . . . 5 ((𝑥Q𝑦Q) → (1st𝑥) ∈ N)
5 elpqn 10944 . . . . . . 7 (𝑦Q𝑦 ∈ (N × N))
65adantl 481 . . . . . 6 ((𝑥Q𝑦Q) → 𝑦 ∈ (N × N))
7 xp2nd 8026 . . . . . 6 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
86, 7syl 17 . . . . 5 ((𝑥Q𝑦Q) → (2nd𝑦) ∈ N)
9 mulclpi 10912 . . . . 5 (((1st𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
104, 8, 9syl2anc 584 . . . 4 ((𝑥Q𝑦Q) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
11 xp1st 8025 . . . . . 6 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
126, 11syl 17 . . . . 5 ((𝑥Q𝑦Q) → (1st𝑦) ∈ N)
13 xp2nd 8026 . . . . . 6 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
142, 13syl 17 . . . . 5 ((𝑥Q𝑦Q) → (2nd𝑥) ∈ N)
15 mulclpi 10912 . . . . 5 (((1st𝑦) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
1612, 14, 15syl2anc 584 . . . 4 ((𝑥Q𝑦Q) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
17 ltsopi 10907 . . . . 5 <N Or N
18 sotric 5596 . . . . 5 (( <N Or N ∧ (((1st𝑥) ·N (2nd𝑦)) ∈ N ∧ ((1st𝑦) ·N (2nd𝑥)) ∈ N)) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ¬ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
1917, 18mpan 690 . . . 4 ((((1st𝑥) ·N (2nd𝑦)) ∈ N ∧ ((1st𝑦) ·N (2nd𝑥)) ∈ N) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ¬ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
2010, 16, 19syl2anc 584 . . 3 ((𝑥Q𝑦Q) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ¬ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
21 ordpinq 10962 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))))
22 fveq2 6881 . . . . . . 7 (𝑥 = 𝑦 → (1st𝑥) = (1st𝑦))
23 fveq2 6881 . . . . . . . 8 (𝑥 = 𝑦 → (2nd𝑥) = (2nd𝑦))
2423eqcomd 2742 . . . . . . 7 (𝑥 = 𝑦 → (2nd𝑦) = (2nd𝑥))
2522, 24oveq12d 7428 . . . . . 6 (𝑥 = 𝑦 → ((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)))
26 enqbreq2 10939 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (𝑥 ~Q 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥))))
271, 5, 26syl2an 596 . . . . . . 7 ((𝑥Q𝑦Q) → (𝑥 ~Q 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥))))
28 enqeq 10953 . . . . . . . 8 ((𝑥Q𝑦Q𝑥 ~Q 𝑦) → 𝑥 = 𝑦)
29283expia 1121 . . . . . . 7 ((𝑥Q𝑦Q) → (𝑥 ~Q 𝑦𝑥 = 𝑦))
3027, 29sylbird 260 . . . . . 6 ((𝑥Q𝑦Q) → (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) → 𝑥 = 𝑦))
3125, 30impbid2 226 . . . . 5 ((𝑥Q𝑦Q) → (𝑥 = 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥))))
32 ordpinq 10962 . . . . . 6 ((𝑦Q𝑥Q) → (𝑦 <Q 𝑥 ↔ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦))))
3332ancoms 458 . . . . 5 ((𝑥Q𝑦Q) → (𝑦 <Q 𝑥 ↔ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦))))
3431, 33orbi12d 918 . . . 4 ((𝑥Q𝑦Q) → ((𝑥 = 𝑦𝑦 <Q 𝑥) ↔ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
3534notbid 318 . . 3 ((𝑥Q𝑦Q) → (¬ (𝑥 = 𝑦𝑦 <Q 𝑥) ↔ ¬ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
3620, 21, 353bitr4d 311 . 2 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ ¬ (𝑥 = 𝑦𝑦 <Q 𝑥)))
37213adant3 1132 . . . . . 6 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))))
38 elpqn 10944 . . . . . . . 8 (𝑧Q𝑧 ∈ (N × N))
39383ad2ant3 1135 . . . . . . 7 ((𝑥Q𝑦Q𝑧Q) → 𝑧 ∈ (N × N))
40 xp2nd 8026 . . . . . . 7 (𝑧 ∈ (N × N) → (2nd𝑧) ∈ N)
41 ltmpi 10923 . . . . . . 7 ((2nd𝑧) ∈ N → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥)))))
4239, 40, 413syl 18 . . . . . 6 ((𝑥Q𝑦Q𝑧Q) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥)))))
4337, 42bitrd 279 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥)))))
44 ordpinq 10962 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦 <Q 𝑧 ↔ ((1st𝑦) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑦))))
45443adant1 1130 . . . . . 6 ((𝑥Q𝑦Q𝑧Q) → (𝑦 <Q 𝑧 ↔ ((1st𝑦) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑦))))
4613ad2ant1 1133 . . . . . . 7 ((𝑥Q𝑦Q𝑧Q) → 𝑥 ∈ (N × N))
47 ltmpi 10923 . . . . . . 7 ((2nd𝑥) ∈ N → (((1st𝑦) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑦)) ↔ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦)))))
4846, 13, 473syl 18 . . . . . 6 ((𝑥Q𝑦Q𝑧Q) → (((1st𝑦) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑦)) ↔ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦)))))
4945, 48bitrd 279 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑦 <Q 𝑧 ↔ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦)))))
5043, 49anbi12d 632 . . . 4 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) ↔ (((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) ∧ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦))))))
51 fvex 6894 . . . . . . 7 (2nd𝑥) ∈ V
52 fvex 6894 . . . . . . 7 (1st𝑦) ∈ V
53 fvex 6894 . . . . . . 7 (2nd𝑧) ∈ V
54 mulcompi 10915 . . . . . . 7 (𝑟 ·N 𝑠) = (𝑠 ·N 𝑟)
55 mulasspi 10916 . . . . . . 7 ((𝑟 ·N 𝑠) ·N 𝑡) = (𝑟 ·N (𝑠 ·N 𝑡))
5651, 52, 53, 54, 55caov13 7642 . . . . . 6 ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) = ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥)))
57 fvex 6894 . . . . . . 7 (1st𝑧) ∈ V
58 fvex 6894 . . . . . . 7 (2nd𝑦) ∈ V
5951, 57, 58, 54, 55caov13 7642 . . . . . 6 ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦))) = ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))
6056, 59breq12i 5133 . . . . 5 (((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦))) ↔ ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥))))
61 fvex 6894 . . . . . . 7 (1st𝑥) ∈ V
6253, 61, 58, 54, 55caov13 7642 . . . . . 6 ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) = ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧)))
63 ltrelpi 10908 . . . . . . 7 <N ⊆ (N × N)
6417, 63sotri 6121 . . . . . 6 ((((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) ∧ ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))) → ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥))))
6562, 64eqbrtrrid 5160 . . . . 5 ((((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) ∧ ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))) → ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥))))
6660, 65sylan2b 594 . . . 4 ((((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) ∧ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦)))) → ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥))))
6750, 66biimtrdi 253 . . 3 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))))
68 ordpinq 10962 . . . . 5 ((𝑥Q𝑧Q) → (𝑥 <Q 𝑧 ↔ ((1st𝑥) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑥))))
69683adant2 1131 . . . 4 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑧 ↔ ((1st𝑥) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑥))))
7053ad2ant2 1134 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → 𝑦 ∈ (N × N))
71 ltmpi 10923 . . . . 5 ((2nd𝑦) ∈ N → (((1st𝑥) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑥)) ↔ ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))))
7270, 7, 713syl 18 . . . 4 ((𝑥Q𝑦Q𝑧Q) → (((1st𝑥) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑥)) ↔ ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))))
7369, 72bitrd 279 . . 3 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑧 ↔ ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))))
7467, 73sylibrd 259 . 2 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧))
7536, 74isso2i 5603 1 <Q Or Q
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124   Or wor 5565   × cxp 5657  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Ncnpi 10863   ·N cmi 10865   <N clti 10866   ~Q ceq 10870  Qcnq 10871   <Q cltq 10877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489  df-omul 8490  df-er 8724  df-ni 10891  df-mi 10893  df-lti 10894  df-ltpq 10929  df-enq 10930  df-nq 10931  df-ltnq 10937
This theorem is referenced by:  ltbtwnnq  10997  prub  11013  npomex  11015  genpnnp  11024  nqpr  11033  distrlem4pr  11045  prlem934  11052  ltexprlem4  11058  reclem2pr  11067  reclem4pr  11069
  Copyright terms: Public domain W3C validator