MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsonq Structured version   Visualization version   GIF version

Theorem ltsonq 10380
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltsonq <Q Or Q

Proof of Theorem ltsonq
Dummy variables 𝑠 𝑟 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpqn 10336 . . . . . . 7 (𝑥Q𝑥 ∈ (N × N))
21adantr 481 . . . . . 6 ((𝑥Q𝑦Q) → 𝑥 ∈ (N × N))
3 xp1st 7712 . . . . . 6 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
42, 3syl 17 . . . . 5 ((𝑥Q𝑦Q) → (1st𝑥) ∈ N)
5 elpqn 10336 . . . . . . 7 (𝑦Q𝑦 ∈ (N × N))
65adantl 482 . . . . . 6 ((𝑥Q𝑦Q) → 𝑦 ∈ (N × N))
7 xp2nd 7713 . . . . . 6 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
86, 7syl 17 . . . . 5 ((𝑥Q𝑦Q) → (2nd𝑦) ∈ N)
9 mulclpi 10304 . . . . 5 (((1st𝑥) ∈ N ∧ (2nd𝑦) ∈ N) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
104, 8, 9syl2anc 584 . . . 4 ((𝑥Q𝑦Q) → ((1st𝑥) ·N (2nd𝑦)) ∈ N)
11 xp1st 7712 . . . . . 6 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
126, 11syl 17 . . . . 5 ((𝑥Q𝑦Q) → (1st𝑦) ∈ N)
13 xp2nd 7713 . . . . . 6 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
142, 13syl 17 . . . . 5 ((𝑥Q𝑦Q) → (2nd𝑥) ∈ N)
15 mulclpi 10304 . . . . 5 (((1st𝑦) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
1612, 14, 15syl2anc 584 . . . 4 ((𝑥Q𝑦Q) → ((1st𝑦) ·N (2nd𝑥)) ∈ N)
17 ltsopi 10299 . . . . 5 <N Or N
18 sotric 5500 . . . . 5 (( <N Or N ∧ (((1st𝑥) ·N (2nd𝑦)) ∈ N ∧ ((1st𝑦) ·N (2nd𝑥)) ∈ N)) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ¬ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
1917, 18mpan 686 . . . 4 ((((1st𝑥) ·N (2nd𝑦)) ∈ N ∧ ((1st𝑦) ·N (2nd𝑥)) ∈ N) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ¬ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
2010, 16, 19syl2anc 584 . . 3 ((𝑥Q𝑦Q) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ¬ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
21 ordpinq 10354 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))))
22 fveq2 6667 . . . . . . 7 (𝑥 = 𝑦 → (1st𝑥) = (1st𝑦))
23 fveq2 6667 . . . . . . . 8 (𝑥 = 𝑦 → (2nd𝑥) = (2nd𝑦))
2423eqcomd 2832 . . . . . . 7 (𝑥 = 𝑦 → (2nd𝑦) = (2nd𝑥))
2522, 24oveq12d 7166 . . . . . 6 (𝑥 = 𝑦 → ((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)))
26 enqbreq2 10331 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (𝑥 ~Q 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥))))
271, 5, 26syl2an 595 . . . . . . 7 ((𝑥Q𝑦Q) → (𝑥 ~Q 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥))))
28 enqeq 10345 . . . . . . . 8 ((𝑥Q𝑦Q𝑥 ~Q 𝑦) → 𝑥 = 𝑦)
29283expia 1115 . . . . . . 7 ((𝑥Q𝑦Q) → (𝑥 ~Q 𝑦𝑥 = 𝑦))
3027, 29sylbird 261 . . . . . 6 ((𝑥Q𝑦Q) → (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) → 𝑥 = 𝑦))
3125, 30impbid2 227 . . . . 5 ((𝑥Q𝑦Q) → (𝑥 = 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥))))
32 ordpinq 10354 . . . . . 6 ((𝑦Q𝑥Q) → (𝑦 <Q 𝑥 ↔ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦))))
3332ancoms 459 . . . . 5 ((𝑥Q𝑦Q) → (𝑦 <Q 𝑥 ↔ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦))))
3431, 33orbi12d 914 . . . 4 ((𝑥Q𝑦Q) → ((𝑥 = 𝑦𝑦 <Q 𝑥) ↔ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
3534notbid 319 . . 3 ((𝑥Q𝑦Q) → (¬ (𝑥 = 𝑦𝑦 <Q 𝑥) ↔ ¬ (((1st𝑥) ·N (2nd𝑦)) = ((1st𝑦) ·N (2nd𝑥)) ∨ ((1st𝑦) ·N (2nd𝑥)) <N ((1st𝑥) ·N (2nd𝑦)))))
3620, 21, 353bitr4d 312 . 2 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ ¬ (𝑥 = 𝑦𝑦 <Q 𝑥)))
37213adant3 1126 . . . . . 6 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))))
38 elpqn 10336 . . . . . . . 8 (𝑧Q𝑧 ∈ (N × N))
39383ad2ant3 1129 . . . . . . 7 ((𝑥Q𝑦Q𝑧Q) → 𝑧 ∈ (N × N))
40 xp2nd 7713 . . . . . . 7 (𝑧 ∈ (N × N) → (2nd𝑧) ∈ N)
41 ltmpi 10315 . . . . . . 7 ((2nd𝑧) ∈ N → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥)))))
4239, 40, 413syl 18 . . . . . 6 ((𝑥Q𝑦Q𝑧Q) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥)))))
4337, 42bitrd 280 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥)))))
44 ordpinq 10354 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦 <Q 𝑧 ↔ ((1st𝑦) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑦))))
45443adant1 1124 . . . . . 6 ((𝑥Q𝑦Q𝑧Q) → (𝑦 <Q 𝑧 ↔ ((1st𝑦) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑦))))
4613ad2ant1 1127 . . . . . . 7 ((𝑥Q𝑦Q𝑧Q) → 𝑥 ∈ (N × N))
47 ltmpi 10315 . . . . . . 7 ((2nd𝑥) ∈ N → (((1st𝑦) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑦)) ↔ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦)))))
4846, 13, 473syl 18 . . . . . 6 ((𝑥Q𝑦Q𝑧Q) → (((1st𝑦) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑦)) ↔ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦)))))
4945, 48bitrd 280 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑦 <Q 𝑧 ↔ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦)))))
5043, 49anbi12d 630 . . . 4 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) ↔ (((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) ∧ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦))))))
51 fvex 6680 . . . . . . 7 (2nd𝑥) ∈ V
52 fvex 6680 . . . . . . 7 (1st𝑦) ∈ V
53 fvex 6680 . . . . . . 7 (2nd𝑧) ∈ V
54 mulcompi 10307 . . . . . . 7 (𝑟 ·N 𝑠) = (𝑠 ·N 𝑟)
55 mulasspi 10308 . . . . . . 7 ((𝑟 ·N 𝑠) ·N 𝑡) = (𝑟 ·N (𝑠 ·N 𝑡))
5651, 52, 53, 54, 55caov13 7368 . . . . . 6 ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) = ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥)))
57 fvex 6680 . . . . . . 7 (1st𝑧) ∈ V
58 fvex 6680 . . . . . . 7 (2nd𝑦) ∈ V
5951, 57, 58, 54, 55caov13 7368 . . . . . 6 ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦))) = ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))
6056, 59breq12i 5072 . . . . 5 (((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦))) ↔ ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥))))
61 fvex 6680 . . . . . . 7 (1st𝑥) ∈ V
6253, 61, 58, 54, 55caov13 7368 . . . . . 6 ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) = ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧)))
63 ltrelpi 10300 . . . . . . 7 <N ⊆ (N × N)
6417, 63sotri 5985 . . . . . 6 ((((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) ∧ ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))) → ((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥))))
6562, 64eqbrtrrid 5099 . . . . 5 ((((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) ∧ ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))) → ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥))))
6660, 65sylan2b 593 . . . 4 ((((2nd𝑧) ·N ((1st𝑥) ·N (2nd𝑦))) <N ((2nd𝑧) ·N ((1st𝑦) ·N (2nd𝑥))) ∧ ((2nd𝑥) ·N ((1st𝑦) ·N (2nd𝑧))) <N ((2nd𝑥) ·N ((1st𝑧) ·N (2nd𝑦)))) → ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥))))
6750, 66syl6bi 254 . . 3 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))))
68 ordpinq 10354 . . . . 5 ((𝑥Q𝑧Q) → (𝑥 <Q 𝑧 ↔ ((1st𝑥) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑥))))
69683adant2 1125 . . . 4 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑧 ↔ ((1st𝑥) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑥))))
7053ad2ant2 1128 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → 𝑦 ∈ (N × N))
71 ltmpi 10315 . . . . 5 ((2nd𝑦) ∈ N → (((1st𝑥) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑥)) ↔ ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))))
7270, 7, 713syl 18 . . . 4 ((𝑥Q𝑦Q𝑧Q) → (((1st𝑥) ·N (2nd𝑧)) <N ((1st𝑧) ·N (2nd𝑥)) ↔ ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))))
7369, 72bitrd 280 . . 3 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑧 ↔ ((2nd𝑦) ·N ((1st𝑥) ·N (2nd𝑧))) <N ((2nd𝑦) ·N ((1st𝑧) ·N (2nd𝑥)))))
7467, 73sylibrd 260 . 2 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧))
7536, 74isso2i 5507 1 <Q Or Q
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5063   Or wor 5472   × cxp 5552  cfv 6352  (class class class)co 7148  1st c1st 7678  2nd c2nd 7679  Ncnpi 10255   ·N cmi 10257   <N clti 10258   ~Q ceq 10262  Qcnq 10263   <Q cltq 10269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-oadd 8097  df-omul 8098  df-er 8279  df-ni 10283  df-mi 10285  df-lti 10286  df-ltpq 10321  df-enq 10322  df-nq 10323  df-ltnq 10329
This theorem is referenced by:  ltbtwnnq  10389  prub  10405  npomex  10407  genpnnp  10416  nqpr  10425  distrlem4pr  10437  prlem934  10444  ltexprlem4  10450  reclem2pr  10459  reclem4pr  10461
  Copyright terms: Public domain W3C validator