MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Visualization version   GIF version

Theorem archnq 10878
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 10823 . . . 4 (𝐴Q𝐴 ∈ (N × N))
2 xp1st 7959 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
31, 2syl 17 . . 3 (𝐴Q → (1st𝐴) ∈ N)
4 1pi 10781 . . 3 1oN
5 addclpi 10790 . . 3 (((1st𝐴) ∈ N ∧ 1oN) → ((1st𝐴) +N 1o) ∈ N)
63, 4, 5sylancl 586 . 2 (𝐴Q → ((1st𝐴) +N 1o) ∈ N)
7 xp2nd 7960 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
81, 7syl 17 . . . . 5 (𝐴Q → (2nd𝐴) ∈ N)
9 mulclpi 10791 . . . . 5 ((((1st𝐴) +N 1o) ∈ N ∧ (2nd𝐴) ∈ N) → (((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N)
106, 8, 9syl2anc 584 . . . 4 (𝐴Q → (((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N)
11 eqid 2733 . . . . . . 7 ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)
12 oveq2 7360 . . . . . . . . 9 (𝑥 = 1o → ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o))
1312eqeq1d 2735 . . . . . . . 8 (𝑥 = 1o → (((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o) ↔ ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)))
1413rspcev 3573 . . . . . . 7 ((1oN ∧ ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)) → ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o))
154, 11, 14mp2an 692 . . . . . 6 𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o)
16 ltexpi 10800 . . . . . 6 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1o) ∈ N) → ((1st𝐴) <N ((1st𝐴) +N 1o) ↔ ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o)))
1715, 16mpbiri 258 . . . . 5 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1o) ∈ N) → (1st𝐴) <N ((1st𝐴) +N 1o))
183, 6, 17syl2anc 584 . . . 4 (𝐴Q → (1st𝐴) <N ((1st𝐴) +N 1o))
19 nlt1pi 10804 . . . . 5 ¬ (2nd𝐴) <N 1o
20 ltmpi 10802 . . . . . . 7 (((1st𝐴) +N 1o) ∈ N → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o)))
216, 20syl 17 . . . . . 6 (𝐴Q → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o)))
22 mulidpi 10784 . . . . . . . 8 (((1st𝐴) +N 1o) ∈ N → (((1st𝐴) +N 1o) ·N 1o) = ((1st𝐴) +N 1o))
236, 22syl 17 . . . . . . 7 (𝐴Q → (((1st𝐴) +N 1o) ·N 1o) = ((1st𝐴) +N 1o))
2423breq2d 5105 . . . . . 6 (𝐴Q → ((((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o) ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)))
2521, 24bitrd 279 . . . . 5 (𝐴Q → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)))
2619, 25mtbii 326 . . . 4 (𝐴Q → ¬ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o))
27 ltsopi 10786 . . . . 5 <N Or N
28 ltrelpi 10787 . . . . 5 <N ⊆ (N × N)
2927, 28sotri3 6081 . . . 4 (((((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N ∧ (1st𝐴) <N ((1st𝐴) +N 1o) ∧ ¬ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)) → (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴)))
3010, 18, 26, 29syl3anc 1373 . . 3 (𝐴Q → (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴)))
31 pinq 10825 . . . . . 6 (((1st𝐴) +N 1o) ∈ N → ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q)
326, 31syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q)
33 ordpinq 10841 . . . . 5 ((𝐴Q ∧ ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q) → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴))))
3432, 33mpdan 687 . . . 4 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴))))
35 ovex 7385 . . . . . . . 8 ((1st𝐴) +N 1o) ∈ V
36 1oex 8401 . . . . . . . 8 1o ∈ V
3735, 36op2nd 7936 . . . . . . 7 (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩) = 1o
3837oveq2i 7363 . . . . . 6 ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) = ((1st𝐴) ·N 1o)
39 mulidpi 10784 . . . . . . 7 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1o) = (1st𝐴))
403, 39syl 17 . . . . . 6 (𝐴Q → ((1st𝐴) ·N 1o) = (1st𝐴))
4138, 40eqtrid 2780 . . . . 5 (𝐴Q → ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) = (1st𝐴))
4235, 36op1st 7935 . . . . . . 7 (1st ‘⟨((1st𝐴) +N 1o), 1o⟩) = ((1st𝐴) +N 1o)
4342oveq1i 7362 . . . . . 6 ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1o) ·N (2nd𝐴))
4443a1i 11 . . . . 5 (𝐴Q → ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1o) ·N (2nd𝐴)))
4541, 44breq12d 5106 . . . 4 (𝐴Q → (((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) ↔ (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴))))
4634, 45bitrd 279 . . 3 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴))))
4730, 46mpbird 257 . 2 (𝐴Q𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩)
48 opeq1 4824 . . . 4 (𝑥 = ((1st𝐴) +N 1o) → ⟨𝑥, 1o⟩ = ⟨((1st𝐴) +N 1o), 1o⟩)
4948breq2d 5105 . . 3 (𝑥 = ((1st𝐴) +N 1o) → (𝐴 <Q𝑥, 1o⟩ ↔ 𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩))
5049rspcev 3573 . 2 ((((1st𝐴) +N 1o) ∈ N𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩) → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
516, 47, 50syl2anc 584 1 (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  cop 4581   class class class wbr 5093   × cxp 5617  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  1oc1o 8384  Ncnpi 10742   +N cpli 10743   ·N cmi 10744   <N clti 10745  Qcnq 10750   <Q cltq 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-ni 10770  df-pli 10771  df-mi 10772  df-lti 10773  df-ltpq 10808  df-nq 10810  df-ltnq 10816
This theorem is referenced by:  prlem934  10931
  Copyright terms: Public domain W3C validator