MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Visualization version   GIF version

Theorem archnq 10933
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 10878 . . . 4 (𝐴Q𝐴 ∈ (N × N))
2 xp1st 8000 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
31, 2syl 17 . . 3 (𝐴Q → (1st𝐴) ∈ N)
4 1pi 10836 . . 3 1oN
5 addclpi 10845 . . 3 (((1st𝐴) ∈ N ∧ 1oN) → ((1st𝐴) +N 1o) ∈ N)
63, 4, 5sylancl 586 . 2 (𝐴Q → ((1st𝐴) +N 1o) ∈ N)
7 xp2nd 8001 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
81, 7syl 17 . . . . 5 (𝐴Q → (2nd𝐴) ∈ N)
9 mulclpi 10846 . . . . 5 ((((1st𝐴) +N 1o) ∈ N ∧ (2nd𝐴) ∈ N) → (((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N)
106, 8, 9syl2anc 584 . . . 4 (𝐴Q → (((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N)
11 eqid 2729 . . . . . . 7 ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)
12 oveq2 7395 . . . . . . . . 9 (𝑥 = 1o → ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o))
1312eqeq1d 2731 . . . . . . . 8 (𝑥 = 1o → (((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o) ↔ ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)))
1413rspcev 3588 . . . . . . 7 ((1oN ∧ ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)) → ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o))
154, 11, 14mp2an 692 . . . . . 6 𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o)
16 ltexpi 10855 . . . . . 6 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1o) ∈ N) → ((1st𝐴) <N ((1st𝐴) +N 1o) ↔ ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o)))
1715, 16mpbiri 258 . . . . 5 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1o) ∈ N) → (1st𝐴) <N ((1st𝐴) +N 1o))
183, 6, 17syl2anc 584 . . . 4 (𝐴Q → (1st𝐴) <N ((1st𝐴) +N 1o))
19 nlt1pi 10859 . . . . 5 ¬ (2nd𝐴) <N 1o
20 ltmpi 10857 . . . . . . 7 (((1st𝐴) +N 1o) ∈ N → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o)))
216, 20syl 17 . . . . . 6 (𝐴Q → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o)))
22 mulidpi 10839 . . . . . . . 8 (((1st𝐴) +N 1o) ∈ N → (((1st𝐴) +N 1o) ·N 1o) = ((1st𝐴) +N 1o))
236, 22syl 17 . . . . . . 7 (𝐴Q → (((1st𝐴) +N 1o) ·N 1o) = ((1st𝐴) +N 1o))
2423breq2d 5119 . . . . . 6 (𝐴Q → ((((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o) ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)))
2521, 24bitrd 279 . . . . 5 (𝐴Q → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)))
2619, 25mtbii 326 . . . 4 (𝐴Q → ¬ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o))
27 ltsopi 10841 . . . . 5 <N Or N
28 ltrelpi 10842 . . . . 5 <N ⊆ (N × N)
2927, 28sotri3 6103 . . . 4 (((((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N ∧ (1st𝐴) <N ((1st𝐴) +N 1o) ∧ ¬ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)) → (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴)))
3010, 18, 26, 29syl3anc 1373 . . 3 (𝐴Q → (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴)))
31 pinq 10880 . . . . . 6 (((1st𝐴) +N 1o) ∈ N → ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q)
326, 31syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q)
33 ordpinq 10896 . . . . 5 ((𝐴Q ∧ ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q) → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴))))
3432, 33mpdan 687 . . . 4 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴))))
35 ovex 7420 . . . . . . . 8 ((1st𝐴) +N 1o) ∈ V
36 1oex 8444 . . . . . . . 8 1o ∈ V
3735, 36op2nd 7977 . . . . . . 7 (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩) = 1o
3837oveq2i 7398 . . . . . 6 ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) = ((1st𝐴) ·N 1o)
39 mulidpi 10839 . . . . . . 7 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1o) = (1st𝐴))
403, 39syl 17 . . . . . 6 (𝐴Q → ((1st𝐴) ·N 1o) = (1st𝐴))
4138, 40eqtrid 2776 . . . . 5 (𝐴Q → ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) = (1st𝐴))
4235, 36op1st 7976 . . . . . . 7 (1st ‘⟨((1st𝐴) +N 1o), 1o⟩) = ((1st𝐴) +N 1o)
4342oveq1i 7397 . . . . . 6 ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1o) ·N (2nd𝐴))
4443a1i 11 . . . . 5 (𝐴Q → ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1o) ·N (2nd𝐴)))
4541, 44breq12d 5120 . . . 4 (𝐴Q → (((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) ↔ (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴))))
4634, 45bitrd 279 . . 3 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴))))
4730, 46mpbird 257 . 2 (𝐴Q𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩)
48 opeq1 4837 . . . 4 (𝑥 = ((1st𝐴) +N 1o) → ⟨𝑥, 1o⟩ = ⟨((1st𝐴) +N 1o), 1o⟩)
4948breq2d 5119 . . 3 (𝑥 = ((1st𝐴) +N 1o) → (𝐴 <Q𝑥, 1o⟩ ↔ 𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩))
5049rspcev 3588 . 2 ((((1st𝐴) +N 1o) ∈ N𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩) → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
516, 47, 50syl2anc 584 1 (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cop 4595   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  1oc1o 8427  Ncnpi 10797   +N cpli 10798   ·N cmi 10799   <N clti 10800  Qcnq 10805   <Q cltq 10811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-ltpq 10863  df-nq 10865  df-ltnq 10871
This theorem is referenced by:  prlem934  10986
  Copyright terms: Public domain W3C validator