MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Visualization version   GIF version

Theorem archnq 10124
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 10069 . . . 4 (𝐴Q𝐴 ∈ (N × N))
2 xp1st 7465 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
31, 2syl 17 . . 3 (𝐴Q → (1st𝐴) ∈ N)
4 1pi 10027 . . 3 1oN
5 addclpi 10036 . . 3 (((1st𝐴) ∈ N ∧ 1oN) → ((1st𝐴) +N 1o) ∈ N)
63, 4, 5sylancl 580 . 2 (𝐴Q → ((1st𝐴) +N 1o) ∈ N)
7 xp2nd 7466 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
81, 7syl 17 . . . . 5 (𝐴Q → (2nd𝐴) ∈ N)
9 mulclpi 10037 . . . . 5 ((((1st𝐴) +N 1o) ∈ N ∧ (2nd𝐴) ∈ N) → (((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N)
106, 8, 9syl2anc 579 . . . 4 (𝐴Q → (((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N)
11 eqid 2825 . . . . . . 7 ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)
12 oveq2 6918 . . . . . . . . 9 (𝑥 = 1o → ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o))
1312eqeq1d 2827 . . . . . . . 8 (𝑥 = 1o → (((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o) ↔ ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)))
1413rspcev 3526 . . . . . . 7 ((1oN ∧ ((1st𝐴) +N 1o) = ((1st𝐴) +N 1o)) → ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o))
154, 11, 14mp2an 683 . . . . . 6 𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o)
16 ltexpi 10046 . . . . . 6 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1o) ∈ N) → ((1st𝐴) <N ((1st𝐴) +N 1o) ↔ ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1o)))
1715, 16mpbiri 250 . . . . 5 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1o) ∈ N) → (1st𝐴) <N ((1st𝐴) +N 1o))
183, 6, 17syl2anc 579 . . . 4 (𝐴Q → (1st𝐴) <N ((1st𝐴) +N 1o))
19 nlt1pi 10050 . . . . 5 ¬ (2nd𝐴) <N 1o
20 ltmpi 10048 . . . . . . 7 (((1st𝐴) +N 1o) ∈ N → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o)))
216, 20syl 17 . . . . . 6 (𝐴Q → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o)))
22 mulidpi 10030 . . . . . . . 8 (((1st𝐴) +N 1o) ∈ N → (((1st𝐴) +N 1o) ·N 1o) = ((1st𝐴) +N 1o))
236, 22syl 17 . . . . . . 7 (𝐴Q → (((1st𝐴) +N 1o) ·N 1o) = ((1st𝐴) +N 1o))
2423breq2d 4887 . . . . . 6 (𝐴Q → ((((1st𝐴) +N 1o) ·N (2nd𝐴)) <N (((1st𝐴) +N 1o) ·N 1o) ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)))
2521, 24bitrd 271 . . . . 5 (𝐴Q → ((2nd𝐴) <N 1o ↔ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)))
2619, 25mtbii 318 . . . 4 (𝐴Q → ¬ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o))
27 ltsopi 10032 . . . . 5 <N Or N
28 ltrelpi 10033 . . . . 5 <N ⊆ (N × N)
2927, 28sotri3 5772 . . . 4 (((((1st𝐴) +N 1o) ·N (2nd𝐴)) ∈ N ∧ (1st𝐴) <N ((1st𝐴) +N 1o) ∧ ¬ (((1st𝐴) +N 1o) ·N (2nd𝐴)) <N ((1st𝐴) +N 1o)) → (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴)))
3010, 18, 26, 29syl3anc 1494 . . 3 (𝐴Q → (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴)))
31 pinq 10071 . . . . . 6 (((1st𝐴) +N 1o) ∈ N → ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q)
326, 31syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q)
33 ordpinq 10087 . . . . 5 ((𝐴Q ∧ ⟨((1st𝐴) +N 1o), 1o⟩ ∈ Q) → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴))))
3432, 33mpdan 678 . . . 4 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴))))
35 ovex 6942 . . . . . . . 8 ((1st𝐴) +N 1o) ∈ V
364elexi 3430 . . . . . . . 8 1o ∈ V
3735, 36op2nd 7442 . . . . . . 7 (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩) = 1o
3837oveq2i 6921 . . . . . 6 ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) = ((1st𝐴) ·N 1o)
39 mulidpi 10030 . . . . . . 7 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1o) = (1st𝐴))
403, 39syl 17 . . . . . 6 (𝐴Q → ((1st𝐴) ·N 1o) = (1st𝐴))
4138, 40syl5eq 2873 . . . . 5 (𝐴Q → ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) = (1st𝐴))
4235, 36op1st 7441 . . . . . . 7 (1st ‘⟨((1st𝐴) +N 1o), 1o⟩) = ((1st𝐴) +N 1o)
4342oveq1i 6920 . . . . . 6 ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1o) ·N (2nd𝐴))
4443a1i 11 . . . . 5 (𝐴Q → ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1o) ·N (2nd𝐴)))
4541, 44breq12d 4888 . . . 4 (𝐴Q → (((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1o), 1o⟩)) <N ((1st ‘⟨((1st𝐴) +N 1o), 1o⟩) ·N (2nd𝐴)) ↔ (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴))))
4634, 45bitrd 271 . . 3 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩ ↔ (1st𝐴) <N (((1st𝐴) +N 1o) ·N (2nd𝐴))))
4730, 46mpbird 249 . 2 (𝐴Q𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩)
48 opeq1 4625 . . . 4 (𝑥 = ((1st𝐴) +N 1o) → ⟨𝑥, 1o⟩ = ⟨((1st𝐴) +N 1o), 1o⟩)
4948breq2d 4887 . . 3 (𝑥 = ((1st𝐴) +N 1o) → (𝐴 <Q𝑥, 1o⟩ ↔ 𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩))
5049rspcev 3526 . 2 ((((1st𝐴) +N 1o) ∈ N𝐴 <Q ⟨((1st𝐴) +N 1o), 1o⟩) → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
516, 47, 50syl2anc 579 1 (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1o⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wrex 3118  cop 4405   class class class wbr 4875   × cxp 5344  cfv 6127  (class class class)co 6910  1st c1st 7431  2nd c2nd 7432  1oc1o 7824  Ncnpi 9988   +N cpli 9989   ·N cmi 9990   <N clti 9991  Qcnq 9996   <Q cltq 10002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-omul 7836  df-ni 10016  df-pli 10017  df-mi 10018  df-lti 10019  df-ltpq 10054  df-nq 10056  df-ltnq 10062
This theorem is referenced by:  prlem934  10177
  Copyright terms: Public domain W3C validator