![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmaddpi | Structured version Visualization version GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 6021 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
2 | fnoa 8535 | . . . . 5 ⊢ +o Fn (On × On) | |
3 | 2 | fndmi 6663 | . . . 4 ⊢ dom +o = (On × On) |
4 | 3 | ineq2i 4211 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2756 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-pli 10904 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
7 | 6 | dmeqi 5911 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
8 | df-ni 10903 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4132 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 4016 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7880 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 3991 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 563 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 230 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5697 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3967 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 229 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2766 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∖ cdif 3946 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 {csn 4632 × cxp 5680 dom cdm 5682 ↾ cres 5684 Oncon0 6374 ωcom 7876 +o coa 8490 Ncnpi 10875 +N cpli 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-oadd 8497 df-ni 10903 df-pli 10904 |
This theorem is referenced by: addcompi 10925 addasspi 10926 distrpi 10929 addcanpi 10930 addnidpi 10932 ltapi 10934 |
Copyright terms: Public domain | W3C validator |