Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmaddpi | Structured version Visualization version GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5913 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
2 | fnoa 8338 | . . . . 5 ⊢ +o Fn (On × On) | |
3 | 2 | fndmi 6537 | . . . 4 ⊢ dom +o = (On × On) |
4 | 3 | ineq2i 4143 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2766 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-pli 10629 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
7 | 6 | dmeqi 5813 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
8 | df-ni 10628 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4066 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 3955 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7716 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 3930 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 565 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 230 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5604 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3905 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 229 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2776 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 × cxp 5587 dom cdm 5589 ↾ cres 5591 Oncon0 6266 ωcom 7712 +o coa 8294 Ncnpi 10600 +N cpli 10601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-oadd 8301 df-ni 10628 df-pli 10629 |
This theorem is referenced by: addcompi 10650 addasspi 10651 distrpi 10654 addcanpi 10655 addnidpi 10657 ltapi 10659 |
Copyright terms: Public domain | W3C validator |