MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddpi Structured version   Visualization version   GIF version

Theorem dmaddpi 10902
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 5999 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 8518 . . . . 5 +o Fn (On × On)
32fndmi 6641 . . . 4 dom +o = (On × On)
43ineq2i 4192 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2758 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-pli 10885 . . 3 +N = ( +o ↾ (N × N))
76dmeqi 5884 . 2 dom +N = dom ( +o ↾ (N × N))
8 df-ni 10884 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4111 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 4005 . . . . . 6 N ⊆ ω
11 omsson 7863 . . . . . 6 ω ⊆ On
1210, 11sstri 3968 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 231 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5669 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3945 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 230 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2768 1 dom +N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  cdif 3923  cin 3925  wss 3926  c0 4308  {csn 4601   × cxp 5652  dom cdm 5654  cres 5656  Oncon0 6352  ωcom 7859   +o coa 8475  Ncnpi 10856   +N cpli 10857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-oadd 8482  df-ni 10884  df-pli 10885
This theorem is referenced by:  addcompi  10906  addasspi  10907  distrpi  10910  addcanpi  10911  addnidpi  10913  ltapi  10915
  Copyright terms: Public domain W3C validator