![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmaddpi | Structured version Visualization version GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5996 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
2 | fnoa 8506 | . . . . 5 ⊢ +o Fn (On × On) | |
3 | 2 | fndmi 6646 | . . . 4 ⊢ dom +o = (On × On) |
4 | 3 | ineq2i 4204 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2754 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-pli 10867 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
7 | 6 | dmeqi 5897 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
8 | df-ni 10866 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4126 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 4011 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7855 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 3986 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 230 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5684 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3961 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 229 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2764 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∖ cdif 3940 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 {csn 4623 × cxp 5667 dom cdm 5669 ↾ cres 5671 Oncon0 6357 ωcom 7851 +o coa 8461 Ncnpi 10838 +N cpli 10839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-oadd 8468 df-ni 10866 df-pli 10867 |
This theorem is referenced by: addcompi 10888 addasspi 10889 distrpi 10892 addcanpi 10893 addnidpi 10895 ltapi 10897 |
Copyright terms: Public domain | W3C validator |