MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddpi Structured version   Visualization version   GIF version

Theorem dmaddpi 10921
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 6021 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 8535 . . . . 5 +o Fn (On × On)
32fndmi 6663 . . . 4 dom +o = (On × On)
43ineq2i 4211 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2756 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-pli 10904 . . 3 +N = ( +o ↾ (N × N))
76dmeqi 5911 . 2 dom +N = dom ( +o ↾ (N × N))
8 df-ni 10903 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4132 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 4016 . . . . . 6 N ⊆ ω
11 omsson 7880 . . . . . 6 ω ⊆ On
1210, 11sstri 3991 . . . . 5 N ⊆ On
13 anidm 563 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 230 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5697 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3967 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 229 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2766 1 dom +N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  cdif 3946  cin 3948  wss 3949  c0 4326  {csn 4632   × cxp 5680  dom cdm 5682  cres 5684  Oncon0 6374  ωcom 7876   +o coa 8490  Ncnpi 10875   +N cpli 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-oadd 8497  df-ni 10903  df-pli 10904
This theorem is referenced by:  addcompi  10925  addasspi  10926  distrpi  10929  addcanpi  10930  addnidpi  10932  ltapi  10934
  Copyright terms: Public domain W3C validator