| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmaddpi | Structured version Visualization version GIF version | ||
| Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmaddpi | ⊢ dom +N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5967 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
| 2 | fnoa 8433 | . . . . 5 ⊢ +o Fn (On × On) | |
| 3 | 2 | fndmi 6590 | . . . 4 ⊢ dom +o = (On × On) |
| 4 | 3 | ineq2i 4170 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
| 5 | 1, 4 | eqtri 2752 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 6 | df-pli 10786 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
| 7 | 6 | dmeqi 5851 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
| 8 | df-ni 10785 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 9 | difss 4089 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 10 | 8, 9 | eqsstri 3984 | . . . . . 6 ⊢ N ⊆ ω |
| 11 | omsson 7810 | . . . . . 6 ⊢ ω ⊆ On | |
| 12 | 10, 11 | sstri 3947 | . . . . 5 ⊢ N ⊆ On |
| 13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 14 | 12, 13 | mpbir 231 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 15 | xpss12 5638 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 17 | dfss 3924 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 18 | 16, 17 | mpbi 230 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 19 | 5, 7, 18 | 3eqtr4i 2762 | 1 ⊢ dom +N = (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 × cxp 5621 dom cdm 5623 ↾ cres 5625 Oncon0 6311 ωcom 7806 +o coa 8392 Ncnpi 10757 +N cpli 10758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-oadd 8399 df-ni 10785 df-pli 10786 |
| This theorem is referenced by: addcompi 10807 addasspi 10808 distrpi 10811 addcanpi 10812 addnidpi 10814 ltapi 10816 |
| Copyright terms: Public domain | W3C validator |