MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddpi Structured version   Visualization version   GIF version

Theorem dmaddpi 10927
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 6031 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 8544 . . . . 5 +o Fn (On × On)
32fndmi 6672 . . . 4 dom +o = (On × On)
43ineq2i 4224 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2762 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-pli 10910 . . 3 +N = ( +o ↾ (N × N))
76dmeqi 5917 . 2 dom +N = dom ( +o ↾ (N × N))
8 df-ni 10909 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4145 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 4029 . . . . . 6 N ⊆ ω
11 omsson 7890 . . . . . 6 ω ⊆ On
1210, 11sstri 4004 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 231 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5703 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3981 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 230 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2772 1 dom +N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  cdif 3959  cin 3961  wss 3962  c0 4338  {csn 4630   × cxp 5686  dom cdm 5688  cres 5690  Oncon0 6385  ωcom 7886   +o coa 8501  Ncnpi 10881   +N cpli 10882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-oadd 8508  df-ni 10909  df-pli 10910
This theorem is referenced by:  addcompi  10931  addasspi  10932  distrpi  10935  addcanpi  10936  addnidpi  10938  ltapi  10940
  Copyright terms: Public domain W3C validator