| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmaddpi | Structured version Visualization version GIF version | ||
| Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmaddpi | ⊢ dom +N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5961 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
| 2 | fnoa 8423 | . . . . 5 ⊢ +o Fn (On × On) | |
| 3 | 2 | fndmi 6585 | . . . 4 ⊢ dom +o = (On × On) |
| 4 | 3 | ineq2i 4167 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
| 5 | 1, 4 | eqtri 2754 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 6 | df-pli 10761 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
| 7 | 6 | dmeqi 5844 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
| 8 | df-ni 10760 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 9 | difss 4086 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 10 | 8, 9 | eqsstri 3981 | . . . . . 6 ⊢ N ⊆ ω |
| 11 | omsson 7800 | . . . . . 6 ⊢ ω ⊆ On | |
| 12 | 10, 11 | sstri 3944 | . . . . 5 ⊢ N ⊆ On |
| 13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 14 | 12, 13 | mpbir 231 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 15 | xpss12 5631 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 17 | dfss 3921 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 18 | 16, 17 | mpbi 230 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 19 | 5, 7, 18 | 3eqtr4i 2764 | 1 ⊢ dom +N = (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∖ cdif 3899 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {csn 4576 × cxp 5614 dom cdm 5616 ↾ cres 5618 Oncon0 6306 ωcom 7796 +o coa 8382 Ncnpi 10732 +N cpli 10733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-oadd 8389 df-ni 10760 df-pli 10761 |
| This theorem is referenced by: addcompi 10782 addasspi 10783 distrpi 10786 addcanpi 10787 addnidpi 10789 ltapi 10791 |
| Copyright terms: Public domain | W3C validator |