![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmaddpi | Structured version Visualization version GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 6001 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
2 | fnoa 8504 | . . . . 5 ⊢ +o Fn (On × On) | |
3 | 2 | fndmi 6650 | . . . 4 ⊢ dom +o = (On × On) |
4 | 3 | ineq2i 4208 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2760 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-pli 10864 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
7 | 6 | dmeqi 5902 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
8 | df-ni 10863 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4130 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 4015 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7855 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 3990 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 565 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 230 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5690 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3965 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 229 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2770 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 {csn 4627 × cxp 5673 dom cdm 5675 ↾ cres 5677 Oncon0 6361 ωcom 7851 +o coa 8459 Ncnpi 10835 +N cpli 10836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-oadd 8466 df-ni 10863 df-pli 10864 |
This theorem is referenced by: addcompi 10885 addasspi 10886 distrpi 10889 addcanpi 10890 addnidpi 10892 ltapi 10894 |
Copyright terms: Public domain | W3C validator |