Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmaddpi | Structured version Visualization version GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5873 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
2 | fnoa 8235 | . . . . 5 ⊢ +o Fn (On × On) | |
3 | 2 | fndmi 6482 | . . . 4 ⊢ dom +o = (On × On) |
4 | 3 | ineq2i 4124 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2765 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-pli 10487 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
7 | 6 | dmeqi 5773 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
8 | df-ni 10486 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4046 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 3935 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7648 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 3910 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 568 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 234 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5566 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3884 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 233 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2775 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∖ cdif 3863 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 {csn 4541 × cxp 5549 dom cdm 5551 ↾ cres 5553 Oncon0 6213 ωcom 7644 +o coa 8199 Ncnpi 10458 +N cpli 10459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-oadd 8206 df-ni 10486 df-pli 10487 |
This theorem is referenced by: addcompi 10508 addasspi 10509 distrpi 10512 addcanpi 10513 addnidpi 10515 ltapi 10517 |
Copyright terms: Public domain | W3C validator |