MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddpi Structured version   Visualization version   GIF version

Theorem dmaddpi 10884
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 5996 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 8506 . . . . 5 +o Fn (On × On)
32fndmi 6646 . . . 4 dom +o = (On × On)
43ineq2i 4204 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2754 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-pli 10867 . . 3 +N = ( +o ↾ (N × N))
76dmeqi 5897 . 2 dom +N = dom ( +o ↾ (N × N))
8 df-ni 10866 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4126 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 4011 . . . . . 6 N ⊆ ω
11 omsson 7855 . . . . . 6 ω ⊆ On
1210, 11sstri 3986 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 230 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5684 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3961 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 229 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2764 1 dom +N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  cdif 3940  cin 3942  wss 3943  c0 4317  {csn 4623   × cxp 5667  dom cdm 5669  cres 5671  Oncon0 6357  ωcom 7851   +o coa 8461  Ncnpi 10838   +N cpli 10839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-oadd 8468  df-ni 10866  df-pli 10867
This theorem is referenced by:  addcompi  10888  addasspi  10889  distrpi  10892  addcanpi  10893  addnidpi  10895  ltapi  10897
  Copyright terms: Public domain W3C validator