MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddpi Structured version   Visualization version   GIF version

Theorem dmaddpi 10646
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 5913 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 8338 . . . . 5 +o Fn (On × On)
32fndmi 6537 . . . 4 dom +o = (On × On)
43ineq2i 4143 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2766 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-pli 10629 . . 3 +N = ( +o ↾ (N × N))
76dmeqi 5813 . 2 dom +N = dom ( +o ↾ (N × N))
8 df-ni 10628 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4066 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 3955 . . . . . 6 N ⊆ ω
11 omsson 7716 . . . . . 6 ω ⊆ On
1210, 11sstri 3930 . . . . 5 N ⊆ On
13 anidm 565 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 230 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5604 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3905 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 229 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2776 1 dom +N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  cdif 3884  cin 3886  wss 3887  c0 4256  {csn 4561   × cxp 5587  dom cdm 5589  cres 5591  Oncon0 6266  ωcom 7712   +o coa 8294  Ncnpi 10600   +N cpli 10601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-oadd 8301  df-ni 10628  df-pli 10629
This theorem is referenced by:  addcompi  10650  addasspi  10651  distrpi  10654  addcanpi  10655  addnidpi  10657  ltapi  10659
  Copyright terms: Public domain W3C validator