Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddpi Structured version   Visualization version   GIF version

 Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

StepHypRef Expression
1 dmres 5759 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 7987 . . . . 5 +o Fn (On × On)
3 fndm 6328 . . . . 5 ( +o Fn (On × On) → dom +o = (On × On))
42, 3ax-mp 5 . . . 4 dom +o = (On × On)
54ineq2i 4108 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
61, 5eqtri 2818 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
7 df-pli 10144 . . 3 +N = ( +o ↾ (N × N))
87dmeqi 5662 . 2 dom +N = dom ( +o ↾ (N × N))
9 df-ni 10143 . . . . . . 7 N = (ω ∖ {∅})
10 difss 4031 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
119, 10eqsstri 3924 . . . . . 6 N ⊆ ω
12 omsson 7443 . . . . . 6 ω ⊆ On
1311, 12sstri 3900 . . . . 5 N ⊆ On
14 anidm 565 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1513, 14mpbir 232 . . . 4 (N ⊆ On ∧ N ⊆ On)
16 xpss12 5461 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1715, 16ax-mp 5 . . 3 (N × N) ⊆ (On × On)
18 dfss 3877 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1917, 18mpbi 231 . 2 (N × N) = ((N × N) ∩ (On × On))
206, 8, 193eqtr4i 2828 1 dom +N = (N × N)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 396   = wceq 1522   ∖ cdif 3858   ∩ cin 3860   ⊆ wss 3861  ∅c0 4213  {csn 4474   × cxp 5444  dom cdm 5446   ↾ cres 5448  Oncon0 6069   Fn wfn 6223  ωcom 7439   +o coa 7953  Ncnpi 10115   +N cpli 10116 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-fv 6236  df-oprab 7023  df-mpo 7024  df-om 7440  df-1st 7548  df-2nd 7549  df-oadd 7960  df-ni 10143  df-pli 10144 This theorem is referenced by:  addcompi  10165  addasspi  10166  distrpi  10169  addcanpi  10170  addnidpi  10172  ltapi  10174
 Copyright terms: Public domain W3C validator