MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapi Structured version   Visualization version   GIF version

Theorem ltapi 10659
Description: Ordering property of addition for positive integers. (Contributed by NM, 7-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapi (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))

Proof of Theorem ltapi
StepHypRef Expression
1 dmaddpi 10646 . 2 dom +N = (N × N)
2 ltrelpi 10645 . 2 <N ⊆ (N × N)
3 0npi 10638 . 2 ¬ ∅ ∈ N
4 pinn 10634 . . . . . 6 (𝐴N𝐴 ∈ ω)
5 pinn 10634 . . . . . 6 (𝐵N𝐵 ∈ ω)
6 pinn 10634 . . . . . 6 (𝐶N𝐶 ∈ ω)
7 nnaord 8450 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
84, 5, 6, 7syl3an 1159 . . . . 5 ((𝐴N𝐵N𝐶N) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
983expa 1117 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
10 ltpiord 10643 . . . . 5 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
1110adantr 481 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
12 addclpi 10648 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 +N 𝐴) ∈ N)
13 addclpi 10648 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 +N 𝐵) ∈ N)
14 ltpiord 10643 . . . . . . . 8 (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
1512, 13, 14syl2an 596 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
16 addpiord 10640 . . . . . . . . 9 ((𝐶N𝐴N) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴))
1716adantr 481 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴))
18 addpiord 10640 . . . . . . . . 9 ((𝐶N𝐵N) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵))
1918adantl 482 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵))
2017, 19eleq12d 2833 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2115, 20bitrd 278 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2221anandis 675 . . . . 5 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2322ancoms 459 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
249, 11, 233bitr4d 311 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
25243impa 1109 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
261, 2, 3, 25ndmovord 7462 1 (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  ωcom 7712   +o coa 8294  Ncnpi 10600   +N cpli 10601   <N clti 10603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301  df-ni 10628  df-pli 10629  df-lti 10631
This theorem is referenced by:  ltanq  10727
  Copyright terms: Public domain W3C validator