MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapi Structured version   Visualization version   GIF version

Theorem ltapi 10862
Description: Ordering property of addition for positive integers. (Contributed by NM, 7-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapi (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))

Proof of Theorem ltapi
StepHypRef Expression
1 dmaddpi 10849 . 2 dom +N = (N × N)
2 ltrelpi 10848 . 2 <N ⊆ (N × N)
3 0npi 10841 . 2 ¬ ∅ ∈ N
4 pinn 10837 . . . . . 6 (𝐴N𝐴 ∈ ω)
5 pinn 10837 . . . . . 6 (𝐵N𝐵 ∈ ω)
6 pinn 10837 . . . . . 6 (𝐶N𝐶 ∈ ω)
7 nnaord 8585 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
84, 5, 6, 7syl3an 1160 . . . . 5 ((𝐴N𝐵N𝐶N) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
983expa 1118 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
10 ltpiord 10846 . . . . 5 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
1110adantr 480 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
12 addclpi 10851 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 +N 𝐴) ∈ N)
13 addclpi 10851 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 +N 𝐵) ∈ N)
14 ltpiord 10846 . . . . . . . 8 (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
1512, 13, 14syl2an 596 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
16 addpiord 10843 . . . . . . . . 9 ((𝐶N𝐴N) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴))
1716adantr 480 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴))
18 addpiord 10843 . . . . . . . . 9 ((𝐶N𝐵N) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵))
1918adantl 481 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵))
2017, 19eleq12d 2823 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2115, 20bitrd 279 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2221anandis 678 . . . . 5 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2322ancoms 458 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
249, 11, 233bitr4d 311 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
25243impa 1109 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
261, 2, 3, 25ndmovord 7581 1 (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5109  (class class class)co 7389  ωcom 7844   +o coa 8433  Ncnpi 10803   +N cpli 10804   <N clti 10806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-oadd 8440  df-ni 10831  df-pli 10832  df-lti 10834
This theorem is referenced by:  ltanq  10930
  Copyright terms: Public domain W3C validator