MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltapi Structured version   Visualization version   GIF version

Theorem ltapi 10918
Description: Ordering property of addition for positive integers. (Contributed by NM, 7-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltapi (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))

Proof of Theorem ltapi
StepHypRef Expression
1 dmaddpi 10905 . 2 dom +N = (N × N)
2 ltrelpi 10904 . 2 <N ⊆ (N × N)
3 0npi 10897 . 2 ¬ ∅ ∈ N
4 pinn 10893 . . . . . 6 (𝐴N𝐴 ∈ ω)
5 pinn 10893 . . . . . 6 (𝐵N𝐵 ∈ ω)
6 pinn 10893 . . . . . 6 (𝐶N𝐶 ∈ ω)
7 nnaord 8633 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
84, 5, 6, 7syl3an 1158 . . . . 5 ((𝐴N𝐵N𝐶N) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
983expa 1116 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
10 ltpiord 10902 . . . . 5 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
1110adantr 480 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
12 addclpi 10907 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 +N 𝐴) ∈ N)
13 addclpi 10907 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 +N 𝐵) ∈ N)
14 ltpiord 10902 . . . . . . . 8 (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
1512, 13, 14syl2an 595 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
16 addpiord 10899 . . . . . . . . 9 ((𝐶N𝐴N) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴))
1716adantr 480 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴))
18 addpiord 10899 . . . . . . . . 9 ((𝐶N𝐵N) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵))
1918adantl 481 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵))
2017, 19eleq12d 2822 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2115, 20bitrd 279 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2221anandis 677 . . . . 5 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
2322ancoms 458 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
249, 11, 233bitr4d 311 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
25243impa 1108 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
261, 2, 3, 25ndmovord 7605 1 (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099   class class class wbr 5142  (class class class)co 7414  ωcom 7864   +o coa 8477  Ncnpi 10859   +N cpli 10860   <N clti 10862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484  df-ni 10887  df-pli 10888  df-lti 10890
This theorem is referenced by:  ltanq  10986
  Copyright terms: Public domain W3C validator