MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmpi Structured version   Visualization version   GIF version

Theorem ltmpi 10969
Description: Ordering property of multiplication for positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltmpi (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))

Proof of Theorem ltmpi
StepHypRef Expression
1 dmmulpi 10956 . 2 dom ·N = (N × N)
2 ltrelpi 10954 . 2 <N ⊆ (N × N)
3 0npi 10947 . 2 ¬ ∅ ∈ N
4 pinn 10943 . . . . . 6 (𝐴N𝐴 ∈ ω)
5 pinn 10943 . . . . . 6 (𝐵N𝐵 ∈ ω)
6 elni2 10942 . . . . . . 7 (𝐶N ↔ (𝐶 ∈ ω ∧ ∅ ∈ 𝐶))
7 iba 527 . . . . . . . . . 10 (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
8 nnmord 8684 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
97, 8sylan9bbr 510 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
1093exp1 1352 . . . . . . . 8 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))))
1110imp4b 421 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐶 ∈ ω ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
126, 11biimtrid 242 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
134, 5, 12syl2an 595 . . . . 5 ((𝐴N𝐵N) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
1413imp 406 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
15 ltpiord 10952 . . . . 5 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
1615adantr 480 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
17 mulclpi 10958 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) ∈ N)
18 mulclpi 10958 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) ∈ N)
19 ltpiord 10952 . . . . . . . 8 (((𝐶 ·N 𝐴) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
2017, 18, 19syl2an 595 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
21 mulpiord 10950 . . . . . . . . 9 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴))
2221adantr 480 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴))
23 mulpiord 10950 . . . . . . . . 9 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵))
2423adantl 481 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵))
2522, 24eleq12d 2832 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2620, 25bitrd 279 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2726anandis 677 . . . . 5 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2827ancoms 458 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2914, 16, 283bitr4d 311 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
30293impa 1110 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
311, 2, 3, 30ndmovord 7636 1 (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2103  c0 4347   class class class wbr 5169  (class class class)co 7445  ωcom 7899   ·o comu 8516  Ncnpi 10909   ·N cmi 10911   <N clti 10912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-oadd 8522  df-omul 8523  df-ni 10937  df-mi 10939  df-lti 10940
This theorem is referenced by:  ltsonq  11034  lterpq  11035  ltanq  11036  ltmnq  11037  archnq  11045
  Copyright terms: Public domain W3C validator