Proof of Theorem ltmpi
| Step | Hyp | Ref
| Expression |
| 1 | | dmmulpi 10913 |
. 2
⊢ dom
·N = (N ×
N) |
| 2 | | ltrelpi 10911 |
. 2
⊢
<N ⊆ (N ×
N) |
| 3 | | 0npi 10904 |
. 2
⊢ ¬
∅ ∈ N |
| 4 | | pinn 10900 |
. . . . . 6
⊢ (𝐴 ∈ N →
𝐴 ∈
ω) |
| 5 | | pinn 10900 |
. . . . . 6
⊢ (𝐵 ∈ N →
𝐵 ∈
ω) |
| 6 | | elni2 10899 |
. . . . . . 7
⊢ (𝐶 ∈ N ↔
(𝐶 ∈ ω ∧
∅ ∈ 𝐶)) |
| 7 | | iba 527 |
. . . . . . . . . 10
⊢ (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶))) |
| 8 | | nnmord 8652 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 9 | 7, 8 | sylan9bbr 510 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 10 | 9 | 3exp1 1352 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))) |
| 11 | 10 | imp4b 421 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐶 ∈ ω ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 12 | 6, 11 | biimtrid 242 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ N →
(𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 13 | 4, 5, 12 | syl2an 596 |
. . . . 5
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐶 ∈
N → (𝐴
∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 14 | 13 | imp 406 |
. . . 4
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 15 | | ltpiord 10909 |
. . . . 5
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (𝐴
<N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 16 | 15 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 17 | | mulclpi 10915 |
. . . . . . . 8
⊢ ((𝐶 ∈ N ∧
𝐴 ∈ N)
→ (𝐶
·N 𝐴) ∈ N) |
| 18 | | mulclpi 10915 |
. . . . . . . 8
⊢ ((𝐶 ∈ N ∧
𝐵 ∈ N)
→ (𝐶
·N 𝐵) ∈ N) |
| 19 | | ltpiord 10909 |
. . . . . . . 8
⊢ (((𝐶
·N 𝐴) ∈ N ∧ (𝐶
·N 𝐵) ∈ N) → ((𝐶
·N 𝐴) <N (𝐶
·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵))) |
| 20 | 17, 18, 19 | syl2an 596 |
. . . . . . 7
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵))) |
| 21 | | mulpiord 10907 |
. . . . . . . . 9
⊢ ((𝐶 ∈ N ∧
𝐴 ∈ N)
→ (𝐶
·N 𝐴) = (𝐶 ·o 𝐴)) |
| 22 | 21 | adantr 480 |
. . . . . . . 8
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴)) |
| 23 | | mulpiord 10907 |
. . . . . . . . 9
⊢ ((𝐶 ∈ N ∧
𝐵 ∈ N)
→ (𝐶
·N 𝐵) = (𝐶 ·o 𝐵)) |
| 24 | 23 | adantl 481 |
. . . . . . . 8
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵)) |
| 25 | 22, 24 | eleq12d 2827 |
. . . . . . 7
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 26 | 20, 25 | bitrd 279 |
. . . . . 6
⊢ (((𝐶 ∈ N ∧
𝐴 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 27 | 26 | anandis 678 |
. . . . 5
⊢ ((𝐶 ∈ N ∧
(𝐴 ∈ N
∧ 𝐵 ∈
N)) → ((𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 28 | 27 | ancoms 458 |
. . . 4
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → ((𝐶
·N 𝐴) <N (𝐶
·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 29 | 14, 16, 28 | 3bitr4d 311 |
. . 3
⊢ (((𝐴 ∈ N ∧
𝐵 ∈ N)
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ (𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵))) |
| 30 | 29 | 3impa 1109 |
. 2
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N
∧ 𝐶 ∈
N) → (𝐴
<N 𝐵 ↔ (𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵))) |
| 31 | 1, 2, 3, 30 | ndmovord 7605 |
1
⊢ (𝐶 ∈ N →
(𝐴
<N 𝐵 ↔ (𝐶 ·N 𝐴) <N
(𝐶
·N 𝐵))) |