MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmpi Structured version   Visualization version   GIF version

Theorem ltmpi 10328
Description: Ordering property of multiplication for positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltmpi (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))

Proof of Theorem ltmpi
StepHypRef Expression
1 dmmulpi 10315 . 2 dom ·N = (N × N)
2 ltrelpi 10313 . 2 <N ⊆ (N × N)
3 0npi 10306 . 2 ¬ ∅ ∈ N
4 pinn 10302 . . . . . 6 (𝐴N𝐴 ∈ ω)
5 pinn 10302 . . . . . 6 (𝐵N𝐵 ∈ ω)
6 elni2 10301 . . . . . . 7 (𝐶N ↔ (𝐶 ∈ ω ∧ ∅ ∈ 𝐶))
7 iba 530 . . . . . . . . . 10 (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
8 nnmord 8260 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
97, 8sylan9bbr 513 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
1093exp1 1348 . . . . . . . 8 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))))
1110imp4b 424 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐶 ∈ ω ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
126, 11syl5bi 244 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
134, 5, 12syl2an 597 . . . . 5 ((𝐴N𝐵N) → (𝐶N → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
1413imp 409 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
15 ltpiord 10311 . . . . 5 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
1615adantr 483 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
17 mulclpi 10317 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) ∈ N)
18 mulclpi 10317 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) ∈ N)
19 ltpiord 10311 . . . . . . . 8 (((𝐶 ·N 𝐴) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
2017, 18, 19syl2an 597 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵)))
21 mulpiord 10309 . . . . . . . . 9 ((𝐶N𝐴N) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴))
2221adantr 483 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐴) = (𝐶 ·o 𝐴))
23 mulpiord 10309 . . . . . . . . 9 ((𝐶N𝐵N) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵))
2423adantl 484 . . . . . . . 8 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 ·N 𝐵) = (𝐶 ·o 𝐵))
2522, 24eleq12d 2909 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) ∈ (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2620, 25bitrd 281 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2726anandis 676 . . . . 5 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2827ancoms 461 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2914, 16, 283bitr4d 313 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
30293impa 1106 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
311, 2, 3, 30ndmovord 7340 1 (𝐶N → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  c0 4293   class class class wbr 5068  (class class class)co 7158  ωcom 7582   ·o comu 8102  Ncnpi 10268   ·N cmi 10270   <N clti 10271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-omul 8109  df-ni 10296  df-mi 10298  df-lti 10299
This theorem is referenced by:  ltsonq  10393  lterpq  10394  ltanq  10395  ltmnq  10396  archnq  10404
  Copyright terms: Public domain W3C validator