MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpipq Structured version   Visualization version   GIF version

Theorem ordpipq 10830
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpipq (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))

Proof of Theorem ordpipq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5404 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5404 . . 3 𝐶, 𝐷⟩ ∈ V
3 eleq1 2819 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ (N × N) ↔ ⟨𝐴, 𝐵⟩ ∈ (N × N)))
43anbi1d 631 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))))
54anbi1d 631 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))))
6 fveq2 6822 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
7 opelxp 5652 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ ∈ (N × N) ↔ (𝐴N𝐵N))
8 op1stg 7933 . . . . . . . . . 10 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
97, 8sylbi 217 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
109adantr 480 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
116, 10sylan9eq 2786 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (1st𝑥) = 𝐴)
1211oveq1d 7361 . . . . . 6 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → ((1st𝑥) ·N (2nd𝑦)) = (𝐴 ·N (2nd𝑦)))
13 fveq2 6822 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
14 op2ndg 7934 . . . . . . . . . 10 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
157, 14sylbi 217 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1615adantr 480 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1713, 16sylan9eq 2786 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (2nd𝑥) = 𝐵)
1817oveq2d 7362 . . . . . 6 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → ((1st𝑦) ·N (2nd𝑥)) = ((1st𝑦) ·N 𝐵))
1912, 18breq12d 5104 . . . . 5 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)))
2019pm5.32da 579 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
215, 20bitrd 279 . . 3 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
22 eleq1 2819 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ (N × N) ↔ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
2322anbi2d 630 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))))
2423anbi1d 631 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
25 fveq2 6822 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (2nd𝑦) = (2nd ‘⟨𝐶, 𝐷⟩))
26 opelxp 5652 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩ ∈ (N × N) ↔ (𝐶N𝐷N))
27 op2ndg 7934 . . . . . . . . . 10 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
2826, 27sylbi 217 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (N × N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
2928adantl 481 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
3025, 29sylan9eq 2786 . . . . . . 7 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (2nd𝑦) = 𝐷)
3130oveq2d 7362 . . . . . 6 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (𝐴 ·N (2nd𝑦)) = (𝐴 ·N 𝐷))
32 fveq2 6822 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (1st𝑦) = (1st ‘⟨𝐶, 𝐷⟩))
33 op1stg 7933 . . . . . . . . . 10 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3426, 33sylbi 217 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (N × N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3534adantl 481 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3632, 35sylan9eq 2786 . . . . . . 7 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (1st𝑦) = 𝐶)
3736oveq1d 7361 . . . . . 6 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → ((1st𝑦) ·N 𝐵) = (𝐶 ·N 𝐵))
3831, 37breq12d 5104 . . . . 5 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → ((𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵) ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
3938pm5.32da 579 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))))
4024, 39bitrd 279 . . 3 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))))
41 df-ltpq 10798 . . 3 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
421, 2, 21, 40, 41brab 5483 . 2 (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
43 simpr 484 . . 3 (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)) → (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
44 ltrelpi 10777 . . . . . 6 <N ⊆ (N × N)
4544brel 5681 . . . . 5 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → ((𝐴 ·N 𝐷) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N))
46 dmmulpi 10779 . . . . . . 7 dom ·N = (N × N)
47 0npi 10770 . . . . . . 7 ¬ ∅ ∈ N
4846, 47ndmovrcl 7532 . . . . . 6 ((𝐴 ·N 𝐷) ∈ N → (𝐴N𝐷N))
4946, 47ndmovrcl 7532 . . . . . 6 ((𝐶 ·N 𝐵) ∈ N → (𝐶N𝐵N))
5048, 49anim12i 613 . . . . 5 (((𝐴 ·N 𝐷) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N) → ((𝐴N𝐷N) ∧ (𝐶N𝐵N)))
51 opelxpi 5653 . . . . . . 7 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
5251ad2ant2rl 749 . . . . . 6 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
53 simprl 770 . . . . . . 7 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → 𝐶N)
54 simplr 768 . . . . . . 7 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → 𝐷N)
5553, 54opelxpd 5655 . . . . . 6 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
5652, 55jca 511 . . . . 5 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
5745, 50, 563syl 18 . . . 4 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
5857ancri 549 . . 3 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
5943, 58impbii 209 . 2 (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)) ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
6042, 59bitri 275 1 (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091   × cxp 5614  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Ncnpi 10732   ·N cmi 10734   <N clti 10735   <pQ cltpq 10738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-omul 8390  df-ni 10760  df-mi 10762  df-lti 10763  df-ltpq 10798
This theorem is referenced by:  ordpinq  10831  lterpq  10858  ltanq  10859  ltmnq  10860  1lt2nq  10861
  Copyright terms: Public domain W3C validator