MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpipq Structured version   Visualization version   GIF version

Theorem ordpipq 10364
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpipq (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))

Proof of Theorem ordpipq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5356 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5356 . . 3 𝐶, 𝐷⟩ ∈ V
3 eleq1 2900 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ (N × N) ↔ ⟨𝐴, 𝐵⟩ ∈ (N × N)))
43anbi1d 631 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))))
54anbi1d 631 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))))
6 fveq2 6670 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
7 opelxp 5591 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ ∈ (N × N) ↔ (𝐴N𝐵N))
8 op1stg 7701 . . . . . . . . . 10 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
97, 8sylbi 219 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
109adantr 483 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
116, 10sylan9eq 2876 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (1st𝑥) = 𝐴)
1211oveq1d 7171 . . . . . 6 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → ((1st𝑥) ·N (2nd𝑦)) = (𝐴 ·N (2nd𝑦)))
13 fveq2 6670 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
14 op2ndg 7702 . . . . . . . . . 10 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
157, 14sylbi 219 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1615adantr 483 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1713, 16sylan9eq 2876 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (2nd𝑥) = 𝐵)
1817oveq2d 7172 . . . . . 6 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → ((1st𝑦) ·N (2nd𝑥)) = ((1st𝑦) ·N 𝐵))
1912, 18breq12d 5079 . . . . 5 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)))
2019pm5.32da 581 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
215, 20bitrd 281 . . 3 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
22 eleq1 2900 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ (N × N) ↔ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
2322anbi2d 630 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))))
2423anbi1d 631 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
25 fveq2 6670 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (2nd𝑦) = (2nd ‘⟨𝐶, 𝐷⟩))
26 opelxp 5591 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩ ∈ (N × N) ↔ (𝐶N𝐷N))
27 op2ndg 7702 . . . . . . . . . 10 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
2826, 27sylbi 219 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (N × N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
2928adantl 484 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
3025, 29sylan9eq 2876 . . . . . . 7 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (2nd𝑦) = 𝐷)
3130oveq2d 7172 . . . . . 6 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (𝐴 ·N (2nd𝑦)) = (𝐴 ·N 𝐷))
32 fveq2 6670 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (1st𝑦) = (1st ‘⟨𝐶, 𝐷⟩))
33 op1stg 7701 . . . . . . . . . 10 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3426, 33sylbi 219 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (N × N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3534adantl 484 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3632, 35sylan9eq 2876 . . . . . . 7 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (1st𝑦) = 𝐶)
3736oveq1d 7171 . . . . . 6 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → ((1st𝑦) ·N 𝐵) = (𝐶 ·N 𝐵))
3831, 37breq12d 5079 . . . . 5 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → ((𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵) ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
3938pm5.32da 581 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))))
4024, 39bitrd 281 . . 3 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))))
41 df-ltpq 10332 . . 3 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
421, 2, 21, 40, 41brab 5430 . 2 (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
43 simpr 487 . . 3 (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)) → (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
44 ltrelpi 10311 . . . . . 6 <N ⊆ (N × N)
4544brel 5617 . . . . 5 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → ((𝐴 ·N 𝐷) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N))
46 dmmulpi 10313 . . . . . . 7 dom ·N = (N × N)
47 0npi 10304 . . . . . . 7 ¬ ∅ ∈ N
4846, 47ndmovrcl 7334 . . . . . 6 ((𝐴 ·N 𝐷) ∈ N → (𝐴N𝐷N))
4946, 47ndmovrcl 7334 . . . . . 6 ((𝐶 ·N 𝐵) ∈ N → (𝐶N𝐵N))
5048, 49anim12i 614 . . . . 5 (((𝐴 ·N 𝐷) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N) → ((𝐴N𝐷N) ∧ (𝐶N𝐵N)))
51 opelxpi 5592 . . . . . . 7 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
5251ad2ant2rl 747 . . . . . 6 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
53 simprl 769 . . . . . . 7 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → 𝐶N)
54 simplr 767 . . . . . . 7 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → 𝐷N)
5553, 54opelxpd 5593 . . . . . 6 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
5652, 55jca 514 . . . . 5 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
5745, 50, 563syl 18 . . . 4 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
5857ancri 552 . . 3 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
5943, 58impbii 211 . 2 (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)) ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
6042, 59bitri 277 1 (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  cop 4573   class class class wbr 5066   × cxp 5553  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  Ncnpi 10266   ·N cmi 10268   <N clti 10269   <pQ cltpq 10272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-omul 8107  df-ni 10294  df-mi 10296  df-lti 10297  df-ltpq 10332
This theorem is referenced by:  ordpinq  10365  lterpq  10392  ltanq  10393  ltmnq  10394  1lt2nq  10395
  Copyright terms: Public domain W3C validator