Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuop23d Structured version   Visualization version   GIF version

Theorem mnuop23d 43015
Description: Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuop23d.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuop23d.2 (𝜑𝑈𝑀)
mnuop23d.3 (𝜑𝐴𝑈)
mnuop23d.4 (𝜑𝐹𝑉)
Assertion
Ref Expression
mnuop23d (𝜑 → ∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
Distinct variable groups:   𝑣,𝐹   𝑤,𝐴,𝑖   𝑤,𝑢,𝐹,𝑖   𝑤,𝑣,𝑈,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙,𝑖   𝑤,𝑟   𝑢,𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙,𝑖
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑖,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑣,𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑤,𝑣,𝑢,𝑖,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑉(𝑤,𝑣,𝑢,𝑖,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuop23d
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mnuop23d.4 . 2 (𝜑𝐹𝑉)
2 mnuop23d.1 . . . 4 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
3 mnuop23d.2 . . . 4 (𝜑𝑈𝑀)
4 mnuop23d.3 . . . 4 (𝜑𝐴𝑈)
52, 3, 4mnuop123d 43011 . . 3 (𝜑 → (𝒫 𝐴𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
65simprd 496 . 2 (𝜑 → ∀𝑓𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))
7 eleq2 2822 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑣𝑓𝑣𝐹))
87anbi2d 629 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑖𝑣𝑣𝑓) ↔ (𝑖𝑣𝑣𝐹)))
98rexbidv 3178 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) ↔ ∃𝑣𝑈 (𝑖𝑣𝑣𝐹)))
10 rexeq 3321 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑢𝑓 (𝑖𝑢 𝑢𝑤) ↔ ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)))
119, 10imbi12d 344 . . . . . 6 (𝑓 = 𝐹 → ((∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)) ↔ (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
1211ralbidv 3177 . . . . 5 (𝑓 = 𝐹 → (∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)) ↔ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
1312anbi2d 629 . . . 4 (𝑓 = 𝐹 → ((𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))) ↔ (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)))))
1413rexbidv 3178 . . 3 (𝑓 = 𝐹 → (∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))) ↔ ∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)))))
1514spcgv 3586 . 2 (𝐹𝑉 → (∀𝑓𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))) → ∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)))))
161, 6, 15sylc 65 1 (𝜑 → ∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wcel 2106  {cab 2709  wral 3061  wrex 3070  wss 3948  𝒫 cpw 4602   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-in 3955  df-ss 3965  df-pw 4604  df-uni 4909
This theorem is referenced by:  mnupwd  43016  mnuop3d  43020
  Copyright terms: Public domain W3C validator