Proof of Theorem mnuop3d
| Step | Hyp | Ref
 | Expression | 
| 1 |   | mnuop3d.1 | 
. . 3
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | 
| 2 |   | mnuop3d.2 | 
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝑀) | 
| 3 |   | mnuop3d.3 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑈) | 
| 4 |   | mnuop3d.4 | 
. . . 4
⊢ (𝜑 → 𝐹 ⊆ 𝑈) | 
| 5 | 2, 4 | sselpwd 5308 | 
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝒫 𝑈) | 
| 6 | 1, 2, 3, 5 | mnuop23d 44218 | 
. 2
⊢ (𝜑 → ∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 7 | 4 | sseld 3962 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ 𝐹 → 𝑣 ∈ 𝑈)) | 
| 8 | 7 | adantrd 491 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑣 ∈ 𝐹 ∧ 𝑖 ∈ 𝑣) → 𝑣 ∈ 𝑈)) | 
| 9 |   | pm3.22 459 | 
. . . . . . . 8
⊢ ((𝑣 ∈ 𝐹 ∧ 𝑖 ∈ 𝑣) → (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹)) | 
| 10 | 8, 9 | jca2 513 | 
. . . . . . 7
⊢ (𝜑 → ((𝑣 ∈ 𝐹 ∧ 𝑖 ∈ 𝑣) → (𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹)))) | 
| 11 | 10 | reximdv2 3151 | 
. . . . . 6
⊢ (𝜑 → (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹))) | 
| 12 | 11 | imim1d 82 | 
. . . . 5
⊢ (𝜑 → ((∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 13 | 12 | ralimdv 3156 | 
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 14 | 13 | adantld 490 | 
. . 3
⊢ (𝜑 → ((𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 15 | 14 | reximdv 3157 | 
. 2
⊢ (𝜑 → (∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | 
| 16 | 6, 15 | mpd 15 | 
1
⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |