Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuop3d Structured version   Visualization version   GIF version

Theorem mnuop3d 44283
Description: Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuop3d.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuop3d.2 (𝜑𝑈𝑀)
mnuop3d.3 (𝜑𝐴𝑈)
mnuop3d.4 (𝜑𝐹𝑈)
Assertion
Ref Expression
mnuop3d (𝜑 → ∃𝑤𝑈𝑖𝐴 (∃𝑣𝐹 𝑖𝑣 → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)))
Distinct variable groups:   𝑣,𝐹   𝑤,𝐴,𝑖   𝜑,𝑤,𝑣,𝑖   𝑤,𝑢,𝐹,𝑖   𝑤,𝑈,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙,𝑣,𝑖   𝑤,𝑟   𝑢,𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙,𝑖
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑣,𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑤,𝑣,𝑢,𝑖,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuop3d
StepHypRef Expression
1 mnuop3d.1 . . 3 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnuop3d.2 . . 3 (𝜑𝑈𝑀)
3 mnuop3d.3 . . 3 (𝜑𝐴𝑈)
4 mnuop3d.4 . . . 4 (𝜑𝐹𝑈)
52, 4sselpwd 5337 . . 3 (𝜑𝐹 ∈ 𝒫 𝑈)
61, 2, 3, 5mnuop23d 44278 . 2 (𝜑 → ∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
74sseld 3997 . . . . . . . . 9 (𝜑 → (𝑣𝐹𝑣𝑈))
87adantrd 491 . . . . . . . 8 (𝜑 → ((𝑣𝐹𝑖𝑣) → 𝑣𝑈))
9 pm3.22 459 . . . . . . . 8 ((𝑣𝐹𝑖𝑣) → (𝑖𝑣𝑣𝐹))
108, 9jca2 513 . . . . . . 7 (𝜑 → ((𝑣𝐹𝑖𝑣) → (𝑣𝑈 ∧ (𝑖𝑣𝑣𝐹))))
1110reximdv2 3164 . . . . . 6 (𝜑 → (∃𝑣𝐹 𝑖𝑣 → ∃𝑣𝑈 (𝑖𝑣𝑣𝐹)))
1211imim1d 82 . . . . 5 (𝜑 → ((∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)) → (∃𝑣𝐹 𝑖𝑣 → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
1312ralimdv 3169 . . . 4 (𝜑 → (∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)) → ∀𝑖𝐴 (∃𝑣𝐹 𝑖𝑣 → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
1413adantld 490 . . 3 (𝜑 → ((𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))) → ∀𝑖𝐴 (∃𝑣𝐹 𝑖𝑣 → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
1514reximdv 3170 . 2 (𝜑 → (∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))) → ∃𝑤𝑈𝑖𝐴 (∃𝑣𝐹 𝑖𝑣 → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
166, 15mpd 15 1 (𝜑 → ∃𝑤𝑈𝑖𝐴 (∃𝑣𝐹 𝑖𝑣 → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2714  wral 3061  wrex 3070  wss 3966  𝒫 cpw 4608   cuni 4915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-in 3973  df-ss 3983  df-pw 4610  df-uni 4916
This theorem is referenced by:  mnuprdlem4  44287  mnuunid  44289  mnurndlem2  44294
  Copyright terms: Public domain W3C validator