Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnupwd | Structured version Visualization version GIF version |
Description: Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnupwd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnupwd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnupwd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
mnupwd | ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnupwd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnupwd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnupwd.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 0ex 5185 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ∅ ∈ V) |
6 | 1, 2, 3, 5 | mnuop23d 41467 | . . 3 ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
7 | simpl 486 | . . . 4 ⊢ ((𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → 𝒫 𝐴 ⊆ 𝑤) | |
8 | 7 | reximi 3158 | . . 3 ⊢ (∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → ∃𝑤 ∈ 𝑈 𝒫 𝐴 ⊆ 𝑤) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 𝒫 𝐴 ⊆ 𝑤) |
10 | 1, 2, 9 | mnuss2d 41465 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1540 = wceq 1542 ∈ wcel 2114 {cab 2717 ∀wral 3054 ∃wrex 3055 Vcvv 3400 ⊆ wss 3853 ∅c0 4221 𝒫 cpw 4498 ∪ cuni 4806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 ax-sep 5177 ax-nul 5184 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-dif 3856 df-in 3860 df-ss 3870 df-nul 4222 df-pw 4500 df-uni 4807 |
This theorem is referenced by: mnusnd 41469 mnuprssd 41470 mnugrud 41485 |
Copyright terms: Public domain | W3C validator |