| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnupwd | Structured version Visualization version GIF version | ||
| Description: Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mnupwd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
| mnupwd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
| mnupwd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| mnupwd | ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnupwd.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 2 | mnupwd.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 3 | mnupwd.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 4 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → ∅ ∈ V) |
| 6 | 1, 2, 3, 5 | mnuop23d 44278 | . . 3 ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → 𝒫 𝐴 ⊆ 𝑤) | |
| 8 | 7 | reximi 3068 | . . 3 ⊢ (∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ ∅) → ∃𝑢 ∈ ∅ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → ∃𝑤 ∈ 𝑈 𝒫 𝐴 ⊆ 𝑤) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 𝒫 𝐴 ⊆ 𝑤) |
| 10 | 1, 2, 9 | mnuss2d 44276 | 1 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2110 {cab 2708 ∀wral 3045 ∃wrex 3054 Vcvv 3434 ⊆ wss 3900 ∅c0 4281 𝒫 cpw 4548 ∪ cuni 4857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-in 3907 df-ss 3917 df-nul 4282 df-pw 4550 df-uni 4858 |
| This theorem is referenced by: mnusnd 44280 mnuprssd 44281 mnugrud 44296 |
| Copyright terms: Public domain | W3C validator |