Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnu0eld | Structured version Visualization version GIF version |
Description: A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnu0eld.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnu0eld.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnu0eld.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
mnu0eld | ⊢ (𝜑 → ∅ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnu0eld.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnu0eld.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnu0eld.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 0ss 4328 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝐴) |
6 | 1, 2, 3, 5 | mnussd 41743 | 1 ⊢ (𝜑 → ∅ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1541 = wceq 1543 ∈ wcel 2112 {cab 2716 ∀wral 3064 ∃wrex 3065 ⊆ wss 3884 ∅c0 4254 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-sep 5216 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-in 3891 df-ss 3901 df-nul 4255 df-pw 4532 df-uni 4837 |
This theorem is referenced by: mnuprdlem4 41755 |
Copyright terms: Public domain | W3C validator |