Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnu0eld | Structured version Visualization version GIF version |
Description: A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnu0eld.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnu0eld.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnu0eld.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
mnu0eld | ⊢ (𝜑 → ∅ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnu0eld.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnu0eld.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnu0eld.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝐴) |
6 | 1, 2, 3, 5 | mnussd 41881 | 1 ⊢ (𝜑 → ∅ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-uni 4840 |
This theorem is referenced by: mnuprdlem4 41893 |
Copyright terms: Public domain | W3C validator |